Photovoltaic Array Fault Diagnosis and Localization Method Based on Modulated Photocurrent and Machine Learning

保存先:
書誌詳細
出版年:Sensors vol. 25, no. 1 (2025), p. 136
第一著者: Tao, Yebo
その他の著者: Yu, Tingting, Yang, Jiayi
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3153689657
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25010136  |2 doi 
035 |a 3153689657 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Tao, Yebo  |u College of Intelligent Manufacturing, Jiaxing Vocational & Technical College, Jiaxing 314036, China 
245 1 |a Photovoltaic Array Fault Diagnosis and Localization Method Based on Modulated Photocurrent and Machine Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Photovoltaic arrays are exposed to outdoor conditions year-round, leading to degradation, cracks, open circuits, and other faults. Hence, the establishment of an effective fault diagnosis system for photovoltaic arrays is of paramount importance. However, existing fault diagnosis methods often trade off between high accuracy and localization. To address this concern, this paper proposes a fault identification and localization approach for photovoltaic arrays based on modulated photocurrent and machine learning. By irradiating different frequency-modulated light, this method separates photocurrent and directly measures the photoelectric conversion efficiency of each panel, achieving both high accuracy and localization. Through machine learning classification algorithms, the current amplitude and frequency of each photovoltaic panel are identified to achieve fault identification and localization. Compared to other methods, the strengths of this method lie in its ability to achieve high-speed and high-accuracy fault identification and localization by measuring only the short-circuit current. Additionally, the equipment cost is low. The feasibility of the proposed method is demonstrated through practical experimentation. It is determined that when utilizing a neural network algorithm, the fault identification speed meets measurement requirements (5800 obs/s), and the fault diagnosis accuracy is optimal (97.8%). 
653 |a Machine learning 
653 |a Diodes 
653 |a Accuracy 
653 |a Fourier transforms 
653 |a Fault diagnosis 
653 |a Identification 
653 |a Bypass 
653 |a Cost estimates 
653 |a Methods 
653 |a Arrays 
653 |a Algorithms 
653 |a Localization 
653 |a Heat detection 
653 |a Light 
653 |a Thermography 
700 1 |a Yu, Tingting  |u College of Aerospace Science and Technology, Xidian University, Xi’an 710071, China; <email>ttyu@stu.xidian.edu.cn</email> 
700 1 |a Yang, Jiayi  |u College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China; Intelligent Equipment Industrial Research Institute, Hai’an & Taiyuan University of Technology Advanced Manufacturing, Hai’an 226602, China 
773 0 |t Sensors  |g vol. 25, no. 1 (2025), p. 136 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153689657/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153689657/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153689657/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch