MARC

LEADER 00000nab a2200000uu 4500
001 3153799191
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14010150  |2 doi 
035 |a 3153799191 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Claude Bertin Nzoundja Fapi  |u LIED (Interdisciplinary Laboratory for the Energies of Tomorrow)-Laboratory, Université Paris Cité, IUT de Paris Pajol, 20 Quater Rue du Département, 75018 Paris, France; GREAH (Research Group in Electrical Engineering and Automation of Le Havre)-Laboratory, University of Le Havre Normandie, 75 Rue Bellot, 76600 Le Havre, France; <email>mohamed-lamine.toure@etu.univ-lehavre.fr</email> (M.L.T.); <email>brayima.dakyo@univ-lehavre.fr</email> (B.D.) 
245 1 |a Control Strategy for DC Micro-Grids in Heat Pump Applications with Renewable Integration 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a DC micro-grids are emerging as a promising solution for efficiently integrating renewable energy into power systems. These systems offer increased flexibility and enhanced energy management, making them ideal for applications such as heat pump (HP) systems. However, the integration of intermittent renewable energy sources with optimal energy management in these micro-grids poses significant challenges. This paper proposes a novel control strategy designed specifically to improve the performance of DC micro-grids. The strategy enhances energy management by leveraging an environmental mission profile that includes real-time measurements for energy generation and heat pump performance evaluation. This micro-grid application for heat pumps integrates photovoltaic (PV) systems, wind generators (WGs), DC-DC converters, and battery energy storage (BS) systems. The proposed control strategy employs an intelligent maximum power point tracking (MPPT) approach that uses optimization algorithms to finely adjust interactions among the subsystems, including renewable energy sources, storage batteries, and the load (heat pump). The main objective of this strategy is to maximize energy production, improve system stability, and reduce operating costs. To achieve this, it considers factors such as heating and cooling demand, power fluctuations from renewable sources, and the MPPT requirements of the PV system. Simulations over one year, based on real meteorological data (average irradiance of 500 W/m2, average annual wind speed of 5 m/s, temperatures between 2 and 27 °C), and carried out with Matlab/Simulink R2022a, have shown that the proposed model predictive control (MPC) strategy significantly improves the performance of DC micro-grids, particularly for heat pump applications. This strategy ensures a stable DC bus voltage (±1% around 500 V) and maintains the state of charge (SoC) of batteries between 40% and 78%, extending their service life by 20%. Compared with conventional methods, it improves energy efficiency by 15%, reduces operating costs by 30%, and cuts CO2; emissions by 25%. By incorporating this control strategy, DC micro-grids offer a sustainable and reliable solution for heat pump applications, contributing to the transition towards a cleaner and more resilient energy system. This approach also opens new possibilities for renewable energy integration into power grids, providing intelligent and efficient energy management at the local level. 
653 |a Fuel cells 
653 |a Energy management 
653 |a Performance evaluation 
653 |a Distributed generation 
653 |a Heat pumps 
653 |a Storage batteries 
653 |a Optimization techniques 
653 |a Wind speed 
653 |a Predictive control 
653 |a Service life 
653 |a Control systems 
653 |a Energy storage 
653 |a Operating costs 
653 |a Energy resources 
653 |a Cooling loads 
653 |a Energy consumption 
653 |a Climate change 
653 |a Fuzzy logic 
653 |a Photovoltaic cells 
653 |a Electric power systems 
653 |a Environmental management 
653 |a Simulation 
653 |a Control algorithms 
653 |a Cooling 
653 |a Solar energy 
653 |a Electricity 
653 |a Energy industry 
653 |a Voltage converters (DC to DC) 
653 |a Renewable energy sources 
653 |a Renewable resources 
653 |a Optimization 
653 |a State of charge 
653 |a Power management 
653 |a Algorithms 
653 |a Energy efficiency 
653 |a Linear programming 
653 |a Subsystems 
653 |a Alternative energy sources 
653 |a Maximum power tracking 
653 |a Windpowered generators 
653 |a Systems stability 
653 |a Meteorological data 
700 1 |a Touré, Mohamed Lamine  |u GREAH (Research Group in Electrical Engineering and Automation of Le Havre)-Laboratory, University of Le Havre Normandie, 75 Rue Bellot, 76600 Le Havre, France; <email>mohamed-lamine.toure@etu.univ-lehavre.fr</email> (M.L.T.); <email>brayima.dakyo@univ-lehavre.fr</email> (B.D.); Conakry Polytechnic Institute, Gamal Abdel Nasser University, Dixinn Rue 14, Conakry 1147, Guinea 
700 1 |a Camara, Mamadou-Baïlo  |u GREAH (Research Group in Electrical Engineering and Automation of Le Havre)-Laboratory, University of Le Havre Normandie, 75 Rue Bellot, 76600 Le Havre, France; <email>mohamed-lamine.toure@etu.univ-lehavre.fr</email> (M.L.T.); <email>brayima.dakyo@univ-lehavre.fr</email> (B.D.) 
700 1 |a Dakyo, Brayima  |u GREAH (Research Group in Electrical Engineering and Automation of Le Havre)-Laboratory, University of Le Havre Normandie, 75 Rue Bellot, 76600 Le Havre, France; <email>mohamed-lamine.toure@etu.univ-lehavre.fr</email> (M.L.T.); <email>brayima.dakyo@univ-lehavre.fr</email> (B.D.) 
773 0 |t Electronics  |g vol. 14, no. 1 (2025), p. 150 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153799191/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153799191/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153799191/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch