Cognitive Agents Powered by Large Language Models for Agile Software Project Management

Shranjeno v:
Bibliografske podrobnosti
izdano v:Electronics vol. 14, no. 1 (2025), p. 87
Glavni avtor: Cinkusz, Konrad
Drugi avtorji: Chudziak, Jarosław A, Niewiadomska-Szynkiewicz, Ewa
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3153800284
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14010087  |2 doi 
035 |a 3153800284 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Cinkusz, Konrad 
245 1 |a Cognitive Agents Powered by Large Language Models for Agile Software Project Management 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper investigates the integration of cognitive agents powered by Large Language Models (LLMs) within the Scaled Agile Framework (SAFe) to reinforce software project management. By deploying virtual agents in simulated software environments, this study explores their potential to fulfill fundamental roles in IT project development, thereby optimizing project outcomes through intelligent automation. Particular emphasis is placed on the adaptability of these agents to Agile methodologies and their transformative impact on decision-making, problem-solving, and collaboration dynamics. The research leverages the CogniSim ecosystem, a platform designed to simulate real-world software engineering challenges, such as aligning technical capabilities with business objectives, managing interdependencies, and maintaining project agility. Through iterative simulations, cognitive agents demonstrate advanced capabilities in task delegation, inter-agent communication, and project lifecycle management. By employing natural language processing to facilitate meaningful dialogues, these agents emulate human roles and improve the efficiency and precision of Agile practices. Key findings from this investigation highlight the ability of LLM-powered cognitive agents to deliver measurable improvements in various metrics, including task completion times, quality of deliverables, and communication coherence. These agents exhibit scalability and adaptability, ensuring their applicability across diverse and complex project environments. This study underscores the potential of integrating LLM-powered agents into Agile project management frameworks as a means of advancing software engineering practices. This integration not only refines the execution of project management tasks but also sets the stage for a paradigm shift in how teams collaborate and address emerging challenges. By integrating the capabilities of artificial intelligence with the principles of Agile, the CogniSim framework establishes a foundation for more intelligent, efficient, and adaptable software development methodologies. 
653 |a Problem solving 
653 |a Language 
653 |a Agents (artificial intelligence) 
653 |a Software development 
653 |a Collaboration 
653 |a Documentation 
653 |a Communication 
653 |a Task complexity 
653 |a Human performance 
653 |a Architecture 
653 |a Automation 
653 |a Objectives 
653 |a Cognition & reasoning 
653 |a Efficiency 
653 |a Natural language 
653 |a Case studies 
653 |a Simulation 
653 |a Product quality 
653 |a Large language models 
653 |a Planning 
653 |a Decision making 
653 |a Project management 
653 |a Design 
653 |a Artificial intelligence 
653 |a Project development 
653 |a Natural language processing 
653 |a Software engineering 
653 |a Roles 
653 |a Virtual environments 
700 1 |a Chudziak, Jarosław A 
700 1 |a Niewiadomska-Szynkiewicz, Ewa 
773 0 |t Electronics  |g vol. 14, no. 1 (2025), p. 87 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153800284/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153800284/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153800284/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch