Parameter Extraction for Photovoltaic Models with Flood-Algorithm-Based Optimization

Gardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 1 (2025), p. 19
Autor Principal: Bouali, Yacine
Outros autores: Alamri, Basem
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3153800285
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13010019  |2 doi 
035 |a 3153800285 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Bouali, Yacine  |u Department of Electrical Engineering, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Algiers 16111, Algeria 
245 1 |a Parameter Extraction for Photovoltaic Models with Flood-Algorithm-Based Optimization 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurately modeling photovoltaic (PV) cells is crucial for optimizing PV systems. Researchers have proposed numerous mathematical models of PV cells to facilitate the design and simulation of PV systems. Usually, a PV cell is modeled by equivalent electrical circuit models with specific parameters, which are often unknown; this leads to formulating an optimization problem that is addressed through metaheuristic algorithms to identify the PV cell/module parameters accurately. This paper introduces the flood algorithm (FLA), a novel and efficient optimization approach, to extract parameters for various PV models, including single-diode, double-diode, and three-diode models and PV module configurations. The FLA’s performance is systematically evaluated against nine recently developed optimization algorithms through comprehensive comparative and statistical analyses. The results highlight the FLA’s superior convergence speed, global search capability, and robustness. This study explores two distinct objective functions to enhance accuracy: one based on experimental current–voltage data and another integrating the Newton–Raphson method. Applying metaheuristic algorithms with the Newton–Raphson-based objective function reduced the root-mean-square error (RMSE) more effectively than traditional methods. These findings establish the FLA as a computationally efficient and reliable approach to PV parameter extraction, with promising implications for advancing PV system design and simulation. 
653 |a Parameter identification 
653 |a Accuracy 
653 |a Configuration management 
653 |a Costs 
653 |a Fossil fuels 
653 |a Root-mean-square errors 
653 |a Knowledge sharing 
653 |a Renewable resources 
653 |a Newton-Raphson method 
653 |a Systems design 
653 |a Numerical analysis 
653 |a Algorithms 
653 |a Methods 
653 |a Circuits 
653 |a Alternative energy sources 
653 |a Energy resources 
653 |a Design optimization 
653 |a Statistical analysis 
653 |a Optimization algorithms 
653 |a Climate change 
653 |a Heuristic methods 
653 |a Photovoltaic cells 
653 |a Parameter estimation 
700 1 |a Alamri, Basem  |u Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; <email>b.alamri@tu.edu.sa</email> 
773 0 |t Mathematics  |g vol. 13, no. 1 (2025), p. 19 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153800285/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153800285/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153800285/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch