Optimizing Dynamic Evacuation Using Mixed-Integer Linear Programming

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics vol. 13, no. 1 (2025), p. 12
1. Verfasser: Hamoud Bin Obaid
Weitere Verfasser: Trafalis, Theodore B, Abushaega, Mastoor M, Altherwi, Abdulhadi, Hamzi, Ahmed
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3153862555
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13010012  |2 doi 
035 |a 3153862555 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Hamoud Bin Obaid  |u Department of Industrial Engineering, King Saud University, Riyadh 11421, Saudi Arabia; <email>hsbinobaid@ksu.edu.sa</email> 
245 1 |a Optimizing Dynamic Evacuation Using Mixed-Integer Linear Programming 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study presents a new approach to optimize the dynamic evacuation process through a dynamic traffic assignment model formulated using mixed-integer linear programming (MILP). The model approximates the travel time for evacuee groups with a piecewise linear function that accounts for variations in travel time due to load-dependent factors. Significant delays are transferred to subsequent groups to simulate delay propagation. The primary objective is to minimize the network clearance time—the total time required for the last group of evacuees to reach safety from the start of the evacuation. Given the model’s computational intensity, a simplified version is introduced for comparison. Both the original and simplified models are tested on small networks and benchmarked against the Cell Transmission Model, a well-regarded method in dynamic traffic assignment literature. Additional objectives, including average travel time and average evacuation time, are explored. A sensitivity analysis is conducted to assess how varying the number of evacuee groups impacts model outcomes. 
653 |a Mathematical programming 
653 |a Propagation 
653 |a Traffic assignment 
653 |a Time dependence 
653 |a Linear programming 
653 |a Integer programming 
653 |a Sensitivity analysis 
653 |a Transportation models 
653 |a Equilibrium 
653 |a Roads & highways 
653 |a Optimization 
653 |a Travel time 
653 |a Linear functions 
653 |a Transportation planning 
653 |a Traffic flow 
653 |a Mixed integer 
653 |a Evacuation 
700 1 |a Trafalis, Theodore B  |u Department of Industrial and Systems Engineering, University of Oklahoma, 202 W Boyd St. Lab 28, Norman, OK 73019, USA; <email>ttrafalis@ou.edu</email> 
700 1 |a Abushaega, Mastoor M  |u Department of Industrial Engineering, College of Engineering and Computer Science, Jazan University, Jazan 45142, Saudi Arabia; <email>aaaltherwi@jazanu.edu.sa</email> (A.A.); <email>amhamzi@jazanu.edu.sa</email> (A.H.) 
700 1 |a Altherwi, Abdulhadi  |u Department of Industrial Engineering, College of Engineering and Computer Science, Jazan University, Jazan 45142, Saudi Arabia; <email>aaaltherwi@jazanu.edu.sa</email> (A.A.); <email>amhamzi@jazanu.edu.sa</email> (A.H.) 
700 1 |a Hamzi, Ahmed  |u Department of Industrial Engineering, College of Engineering and Computer Science, Jazan University, Jazan 45142, Saudi Arabia; <email>aaaltherwi@jazanu.edu.sa</email> (A.A.); <email>amhamzi@jazanu.edu.sa</email> (A.H.) 
773 0 |t Mathematics  |g vol. 13, no. 1 (2025), p. 12 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153862555/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153862555/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153862555/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch