Joint Task Offloading and Resource Allocation in Mobile Edge Computing-Enabled Medical Vehicular Networks

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:Mathematics vol. 13, no. 1 (2025), p. 52
Prif Awdur: Zhang, Chuangchuang
Awduron Eraill: Liu, Siquan, Yang, Hongyong, Cui, Guanghai, Li, Fuliang, Wang, Xingwei
Cyhoeddwyd:
MDPI AG
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 3153862558
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13010052  |2 doi 
035 |a 3153862558 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Zhang, Chuangchuang  |u School of Information and Electrical Engineering, Ludong University, Yantai 264025, China 
245 1 |a Joint Task Offloading and Resource Allocation in Mobile Edge Computing-Enabled Medical Vehicular Networks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In medical vehicular networks, medical vehicles can serve as efficient mobile medical service points to provide necessary and critical medical services for patients while in motion. The delay requirement is very vital for medical services to guarantee service quality and save the lives of patients. Mobile Edge Computing (MEC), as an emerging network paradigm, enables the computation extensive tasks to be offloaded to edge servers, efficiently reducing the delay and bandwidth demands. MEC technology is a promising solution to provide high-quality medical services for users in medical vehicular networks. However, task offloading and resource allocation incurs additional service delay and energy consumption, affecting the overall service performance and Quality of Experience (QoE) of users. Thus, realizing the optimal task offloading and resource allocation in MEC-enabled medical vehicular networks, to reduce task completion time and energy consumption, becomes a potential challenge. To address the challenge, we investigate the joint task offloading and resource allocation problem in MEC-enabled medical vehicular networks to improve the QoE of users. Considering the resource requirements and QoS constraint, we formulate a multi-objective optimization model, with the target of average task completion time and average energy consumption minimization. On this basis, we propose a MOEAD-based task offloading and resource allocation (IMO) algorithm to solve it. Furthermore, in order to obtain the optimal solution and speed up the algorithm convergence, we design a greedy strategy-based population initialization algorithm. The extensive simulations demonstrate that compared to existing algorithms, our proposed IMO algorithm can obtain a smaller average completion time, and achieve better tradeoff between task completion time and energy consumption. 
653 |a Optimization 
653 |a Edge computing 
653 |a Resource allocation 
653 |a Greedy algorithms 
653 |a Mobile computing 
653 |a User experience 
653 |a Multiple objective analysis 
653 |a Health services 
653 |a Performance evaluation 
653 |a Energy consumption 
653 |a Optimization models 
653 |a Vehicles 
653 |a Patients 
653 |a Delay 
653 |a Quality of service architectures 
653 |a Genetic algorithms 
653 |a Computation offloading 
653 |a Design 
653 |a Energy efficiency 
653 |a Quality of service 
653 |a Linear programming 
653 |a Networks 
653 |a Cloud computing 
653 |a Completion time 
700 1 |a Liu, Siquan  |u School of Information and Electrical Engineering, Ludong University, Yantai 264025, China 
700 1 |a Yang, Hongyong  |u School of Information and Electrical Engineering, Ludong University, Yantai 264025, China 
700 1 |a Cui, Guanghai  |u School of Information and Electrical Engineering, Ludong University, Yantai 264025, China 
700 1 |a Li, Fuliang  |u College of Computer Science and Engineering, Northeastern University, Shenyang 110169, China 
700 1 |a Wang, Xingwei  |u College of Computer Science and Engineering, Northeastern University, Shenyang 110169, China 
773 0 |t Mathematics  |g vol. 13, no. 1 (2025), p. 52 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153862558/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153862558/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153862558/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch