Rapid "recycling" of logical algorithm representations in fronto-parietal reasoning systems following computer programming instructions

Guardado en:
Bibliografiske detaljer
Udgivet i:bioRxiv (Jan 10, 2025)
Hovedforfatter: Yun-Fei, Liu
Andre forfattere: Bedny, Marina
Udgivet:
Cold Spring Harbor Laboratory Press
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3153960550
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.08.631982  |2 doi 
035 |a 3153960550 
045 0 |b d20250110 
100 1 |a Yun-Fei, Liu 
245 1 |a Rapid "recycling" of logical algorithm representations in fronto-parietal reasoning systems following computer programming instructions 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 10, 2025 
513 |a Working Paper 
520 3 |a Programming is a cornerstone of modern society, yet its cognitive and neural basis remains poorly understood. In this study, we test the hypothesis that programming "recycles" pre-existing neural mechanisms and representations in fronto-parietal reasoning networks. Using fMRI, we scanned programming-naive undergraduates (n=22) before (PRE) and after (POST) an introductory Python course. During the PRE scan, participants viewed pseudocode (plain English descriptions of algorithms), and during the POST scan, they read Python code. We found that a left-lateralized fronto-parietal network, previously implicated in programming experts, distinguished between "for" loops and "if" conditionals across both pseudocode and Python code. Representational similarity analysis revealed consistent representations of algorithms across formats (code/pseudocode) and learning stages. Furthermore, such representations encode abstract meanings rather than superficial features. Our findings demonstrate that programming not only recycles pre-existing neural resources evolved for logical reasoning, but the recycling takes place rapidly with only a single semester of training.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://osf.io/2ncfm/ 
653 |a Functional magnetic resonance imaging 
653 |a Recycling 
653 |a Algorithms 
653 |a Python 
653 |a Cognition & reasoning 
700 1 |a Bedny, Marina 
773 0 |t bioRxiv  |g (Jan 10, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153960550/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.08.631982v1