EPISeg: Automated segmentation of the spinal cord on echo planar images using open-access multi-center data

Guardat en:
Dades bibliogràfiques
Publicat a:bioRxiv (Jan 27, 2025)
Autor principal: Banerjee, Rohan
Altres autors: Kaptan, Merve, Tinnermann, Alexandra, Khatibi, Ali, Dabbagh, Alice, Büchel, Christian, Kündig, Christian W, Law, Christine Sw, Pfyffer, Dario, Lythgoe, David J, Tsivaka, Dimitra, Van De Ville, Dimitri, Falk Eippert, Fauziyya Muhammad, Glover, Gary H, David, Gergely, Sr, Haynes, Grace, Haaker, Jan, Brooks, Jonathan C W, Finsterbusch, Jürgen, Martucci, Katherine T, Hemmerling, Kimberly J, Mobarak-Abadi, Mahdi, Hoggarth, Mark A, Howard, Matthew A, Bright, Molly G, Kinany, Nawal, Kowalczyk, Olivia S, Freund, Patrick, Barry, Robert L, Mackey, Sean, Vahdat, Shahabeddin, Schading, Simon, Mcmahon, Stephen B, Parish, Todd, Marchand-Pauvert, Véronique, Chen, Yufen, Smith, Zachary A, Weber, Kenneth A, Ii, De Leener, Benjamin, Cohen-Adad, Julien
Publicat:
Cold Spring Harbor Laboratory Press
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3153960629
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.07.631402  |2 doi 
035 |a 3153960629 
045 0 |b d20250127 
100 1 |a Banerjee, Rohan 
245 1 |a EPISeg: Automated segmentation of the spinal cord on echo planar images using open-access multi-center data 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 27, 2025 
513 |a Working Paper 
520 3 |a Functional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Preprocessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts. Consequently, this segmentation task demands a considerable amount of manual effort which takes time and is prone to user bias. In this work, we (i) gathered a multi-center dataset of spinal cord gradient-echo EPI with ground-truth segmentations and shared it on OpenNeuro [https://openneuro.org/datasets/ds005143/versions/1.3.0], and (ii) developed a deep learning-based model, EPISeg, for the automatic segmentation of the spinal cord on gradient-echo EPI data. We observe a significant improvement in terms of segmentation quality compared to other available spinal cord segmentation models. Our model is resilient to different acquisition protocols as well as commonly observed artifacts in fMRI data. The training code is available at [https://github.com/sct-pipeline/fmri-segmentation/], and the model has been integrated into the Spinal Cord Toolbox as a command-line tool.Competing Interest StatementSince January 2024, Dr. Barry has been employed by the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health. This work was co-authored by Robert Barry in his personal capacity. The opinions expressed in this study are his own and do not necessarily reflect the views of the National Institutes of Health, the Department of Health and Human Services, or the United States government. The other authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.Footnotes* The authors list and affiliations are the only changes made in this updated version of the manuscript.* https://openneuro.org/datasets/ds005143/versions/1.3.0 
610 4 |a National Institutes of Health 
653 |a Autonomic nervous system 
653 |a Image processing 
653 |a Magnetic resonance imaging 
653 |a Spinal cord 
653 |a Spatial discrimination 
653 |a Functional magnetic resonance imaging 
653 |a Automation 
653 |a Deep learning 
653 |a Segmentation 
700 1 |a Kaptan, Merve 
700 1 |a Tinnermann, Alexandra 
700 1 |a Khatibi, Ali 
700 1 |a Dabbagh, Alice 
700 1 |a Büchel, Christian 
700 1 |a Kündig, Christian W 
700 1 |a Law, Christine Sw 
700 1 |a Pfyffer, Dario 
700 1 |a Lythgoe, David J 
700 1 |a Tsivaka, Dimitra 
700 1 |a Van De Ville, Dimitri 
700 1 |a Falk Eippert 
700 1 |a Fauziyya Muhammad 
700 1 |a Glover, Gary H 
700 1 |a David, Gergely, Sr 
700 1 |a Haynes, Grace 
700 1 |a Haaker, Jan 
700 1 |a Brooks, Jonathan C W 
700 1 |a Finsterbusch, Jürgen 
700 1 |a Martucci, Katherine T 
700 1 |a Hemmerling, Kimberly J 
700 1 |a Mobarak-Abadi, Mahdi 
700 1 |a Hoggarth, Mark A 
700 1 |a Howard, Matthew A 
700 1 |a Bright, Molly G 
700 1 |a Kinany, Nawal 
700 1 |a Kowalczyk, Olivia S 
700 1 |a Freund, Patrick 
700 1 |a Barry, Robert L 
700 1 |a Mackey, Sean 
700 1 |a Vahdat, Shahabeddin 
700 1 |a Schading, Simon 
700 1 |a Mcmahon, Stephen B 
700 1 |a Parish, Todd 
700 1 |a Marchand-Pauvert, Véronique 
700 1 |a Chen, Yufen 
700 1 |a Smith, Zachary A 
700 1 |a Weber, Kenneth A, Ii 
700 1 |a De Leener, Benjamin 
700 1 |a Cohen-Adad, Julien 
773 0 |t bioRxiv  |g (Jan 27, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153960629/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153960629/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.07.631402v2