Investigations on segmentation-based fractal texture for texture classification in the presence of Gaussian noise

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 1 (Jan 2025), p. e0315135
Autor principal: Tiwari, Shamik
Otros Autores: Sharma, Akhilesh Kumar, Izzatdin Abdul Aziz, Gupta, Deepak, Jain, Antima, Mahdin, Hairulnizam, Athithan, Senthil, Hidayat, Rahmat
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3154102136
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0315135  |2 doi 
035 |a 3154102136 
045 2 |b d20250101  |b d20250131 
084 |a 174835  |2 nlm 
100 1 |a Tiwari, Shamik 
245 1 |a Investigations on segmentation-based fractal texture for texture classification in the presence of Gaussian noise 
260 |b Public Library of Science  |c Jan 2025 
513 |a Journal Article 
520 3 |a Texture is a significant component used for several applications in content-based image retrieval. Any texture classification method aims to map an anonymously textured input image to one of the existing texture classes. Extensive ranges of methods for labeling image texture were proposed earlier. However, computing the performance of these methods in the presence of various degradations is always an open area of discussion. Image noise is always a dominant factor among various image degradation factors, affecting the performance of these methods and making texture classification challenging. Therefore, it is essential to investigate the interpretation of these methods in the presence of prominent degradation factors such as noise. Applications for Segmentation-Based Fractal Texture Features (SFTF) include image classification, texture generation, and medical image analysis. They are beneficial for examining textures with intricate, erratic patterns that are difficult to characterize using conventional statistical techniques accurately. This paper assesses two texture feature extraction methods based on SFTF and statistical moment-based texture features in the presence and absence of Gaussian noise. The SFTF and statistical moments-based handcrafted features are passed to a multilayer feed-forward neural network for classification. These models are evaluated on natural textures from Kylberg Texture Dataset 1.0. The results show the superiority of segmentation-based fractal analysis over other approaches. The average accuracy rates using the SFTF are 99% and 97% in the absence and presence of Gaussian noise, respectively. 
653 |a Feature extraction 
653 |a Deep learning 
653 |a Fractal analysis 
653 |a Multilayers 
653 |a Degradation 
653 |a Segmentation 
653 |a Normal distribution 
653 |a Medical imaging 
653 |a Neural networks 
653 |a Fractals 
653 |a Decomposition 
653 |a Image degradation 
653 |a Image processing 
653 |a Classification 
653 |a Statistical analysis 
653 |a Statistical models 
653 |a Fractal models 
653 |a Image analysis 
653 |a Image segmentation 
653 |a Computer vision 
653 |a Image retrieval 
653 |a Retrieval 
653 |a Image classification 
653 |a Statistical methods 
653 |a Random noise 
653 |a Methods 
653 |a Algorithms 
653 |a Texture 
653 |a Information retrieval 
653 |a Environmental 
700 1 |a Sharma, Akhilesh Kumar 
700 1 |a Izzatdin Abdul Aziz 
700 1 |a Gupta, Deepak 
700 1 |a Jain, Antima 
700 1 |a Mahdin, Hairulnizam 
700 1 |a Athithan, Senthil 
700 1 |a Hidayat, Rahmat 
773 0 |t PLoS One  |g vol. 20, no. 1 (Jan 2025), p. e0315135 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3154102136/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3154102136/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3154102136/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch