Stochastic decomposition for risk-averse two-stage stochastic linear programs

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal of Global Optimization vol. 91, no. 1 (Jan 2025), p. 59
Publicado em:
Springer Nature B.V.
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3154284297
003 UK-CbPIL
022 |a 0925-5001 
022 |a 1573-2916 
024 7 |a 10.1007/s10898-024-01432-x  |2 doi 
035 |a 3154284297 
045 2 |b d20250101  |b d20250131 
084 |a 66312  |2 nlm 
245 1 |a Stochastic decomposition for risk-averse two-stage stochastic linear programs 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Two-stage risk-averse stochastic programming goes beyond the classical expected value framework and aims at controlling the variability of the cost associated with different outcomes based on a choice of a risk measure. In this paper, we study stochastic decomposition (SD) for solving large-scale risk-averse stochastic linear programs with deviation and quantile risk measures. Large-scale problems refer to instances involving too many outcomes to handle using a direct solver, requiring the use of sampling approaches. SD follows an internal sampling approach in which only one sample is randomly generated at each iteration of the algorithm and has been successful for the risk-neutral setting. We extend SD to the risk-averse setting and establish asymptotic convergence of the algorithm to an optimal solution if one exists. A salient feature of the SD algorithm is that the number of samples is not fixed a priori, which allows obtaining good candidate solutions using a relatively small number of samples. We derive two variations of the SD algorithm, one with a single cut (Single-Cut SD) to approximate both the expected recourse function and dispersion statistic, and the other with two separate cuts (Separate-Cut SD). We report on a computational study based on standard test instances to evaluate the empirical performance of the SD algorithms in the risk-averse setting. The study shows that both SD algorithms require a relatively small number of scenarios to converge to an optimal solution. In addition, the comparative performance of the Single-Cut and Separate-Cut SD algorithms is problem-dependent. 
653 |a Samples 
653 |a Linear programming 
653 |a Algorithms 
653 |a Asymptotic methods 
653 |a Performance evaluation 
653 |a Stochastic programming 
653 |a Sampling 
653 |a Decomposition 
773 0 |t Journal of Global Optimization  |g vol. 91, no. 1 (Jan 2025), p. 59 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3154284297/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3154284297/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch