Detection of pest infestation in stored grain using an electronic nose system optimized for sensor arrays

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Food Measurement & Characterization vol. 19, no. 1 (Jan 2025), p. 439
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3154284507
003 UK-CbPIL
022 |a 2193-4126 
022 |a 2193-4134 
022 |a 1932-7587 
022 |a 1932-9954 
024 7 |a 10.1007/s11694-024-02980-2  |2 doi 
035 |a 3154284507 
045 2 |b d20250101  |b d20250131 
245 1 |a Detection of pest infestation in stored grain using an electronic nose system optimized for sensor arrays 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Pest infestation during grain storage reduces the weight and quality of the grain, which poses a risk to food safety. It’s important to have a reliable, quick, and intelligent approach for spotting pests in grain storage. In this study, an electronic nose (e-nose) was designed to detect the different densities of Tribolium castaneum (Herbst) in stored wheat. To avoid the phenomenon of “dimensional disaster” caused by the large amount of data in the e-nose data processing, the eigenvalues of the e-nose response curve were extracted to form the original feature matrix for data analysis. Then, to obtain the optimal feature matrix, the initial feature matrix was gradually refined using multivariate statistical methods such as response strength analysis, analysis of variance, coefficient of variation analysis, and correlation analysis. Finally, the feature matrix was regressed using partial least squares regression (PLSR), principal component regression (PCR), support vector machine regression (SVR), and Gaussian process regression (GPR) to establish various prediction models. The GPR model presented the best prediction effect among the four regression models, and its correlation coefficient (R), root mean square error (RMSE), and relative analysis error (RPD) were 0.96, 9.08, and 2.24, respectively. This work provides a feasible optimization method by which the e-nose can be used to detect stored grain pest density within a very small error margin and promotes the development of intelligent agriculture. 
653 |a Grain 
653 |a Humidity 
653 |a Data processing 
653 |a Matrices (mathematics) 
653 |a Regression analysis 
653 |a Regression models 
653 |a Electronic noses 
653 |a Correlation analysis 
653 |a Nondestructive testing 
653 |a Least squares method 
653 |a Food quality 
653 |a Statistical methods 
653 |a Statistical analysis 
653 |a Prediction models 
653 |a Error detection 
653 |a Correlation coefficients 
653 |a Correlation coefficient 
653 |a Pattern recognition 
653 |a Grain storage 
653 |a Eigenvalues 
653 |a Data analysis 
653 |a Coefficient of variation 
653 |a Variance analysis 
653 |a Pests 
653 |a Support vector machines 
653 |a Root-mean-square errors 
653 |a Sensors 
653 |a Optimization 
653 |a Multivariate analysis 
653 |a Rice 
653 |a Sensor arrays 
653 |a Gaussian process 
653 |a Infestation 
653 |a Food safety 
653 |a Methods 
653 |a Mathematical models 
653 |a Environmental 
773 0 |t Journal of Food Measurement & Characterization  |g vol. 19, no. 1 (Jan 2025), p. 439 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3154284507/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3154284507/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch