Word Embeddings and Machine Learning Classifiers Applications for Automatic Detection of Suicide Tendencies in Social Media

Guardado en:
Detalles Bibliográficos
Publicado en:Programming and Computer Software vol. 50, no. 8 (Dec 2024), p. 612
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3154524485
003 UK-CbPIL
022 |a 0361-7688 
022 |a 1608-3261 
024 7 |a 10.1134/S0361768824700658  |2 doi 
035 |a 3154524485 
045 2 |b d20241201  |b d20241231 
245 1 |a Word Embeddings and Machine Learning Classifiers Applications for Automatic Detection of Suicide Tendencies in Social Media 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a This study presents an innovative and comprehensive model for the automatic detection of suicidal ideation in social media posts. Through an in-depth analysis of 50000 posts and the combination of four word embedding techniques (Word2Vec, GloVe, MPNet, and GPT-3) with five advanced classifiers, we have achieved an accuracy of over 90% in identifying users who may be at risk. Our results suggest that the integration of large language models like GPT-3 with deep neural network architectures offers a promising tool for suicide prevention in the digital realm, contributing to the development of automated screening systems capable of alerting mental health professionals to potential cases of risk. 
653 |a Suicidal ideation 
653 |a Datasets 
653 |a Large language models 
653 |a Social networks 
653 |a Machine learning 
653 |a Artificial neural networks 
653 |a Digital media 
653 |a Support vector machines 
653 |a Suicides & suicide attempts 
773 0 |t Programming and Computer Software  |g vol. 50, no. 8 (Dec 2024), p. 612 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3154524485/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3154524485/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3154524485/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch