Enhancing Android Ransomware Detection Using an Ensemble Machine Learning Classifier

Guardado en:
Bibliografiske detaljer
Udgivet i:Programming and Computer Software vol. 50, no. 8 (Dec 2024), p. 562
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3154524532
003 UK-CbPIL
022 |a 0361-7688 
022 |a 1608-3261 
024 7 |a 10.1134/S0361768824700622  |2 doi 
035 |a 3154524532 
045 2 |b d20241201  |b d20241231 
245 1 |a Enhancing Android Ransomware Detection Using an Ensemble Machine Learning Classifier 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Ransomware poses a significant threat to Android devices, presenting a pressing concern in the realm of malware. While there has been extensive research on malware detection, distinguishing between various malware categories remains a challenge. Notably, ransomware often disguises its behavior to resemble less harmful forms of malware like adware, evading conventional security measures. Therefore, there is a critical need for advanced malware category detection techniques to elucidate specific behaviors unique to each malware type and bolster detection efficacy. This paper aims to enhance Android ransomware detection by investigating the optimal combination of static features (such as permissions, intents, and API calls) and dynamic features (captured from network traffic flow) that contribute to minimize false negatives when applying supervised machine learning classification. Our research also aims to discern the pivotal features essential for accurate ransomware detection. To this end, we propose a model integrating feature selection techniques and employing various machine learning classifiers, including decision trees, k-nearest neighbors, random forest, gradient boosting, and bagging. The model was implemented in Python, and its evaluation was conducted with and without k-fold validation to offer a broader range of explored behaviours. Our findings highlight the efficacy of combining network-Permission and network-API features, exhibiting superior ransomware detection rates compared to other feature combinations. Moreover, our model achieved recall scores of 99.2 and 97% before and after employing cross-validation, respectively. We also identified 6 API features, 27 network features, and 18 permission features as the most useful ones for ransomware detection in Android. 
653 |a Machine learning 
653 |a Research methodology 
653 |a Datasets 
653 |a Communications traffic 
653 |a Malware 
653 |a Supervised learning 
653 |a Effectiveness 
653 |a Application programming interface 
653 |a Feature selection 
653 |a Ransomware 
653 |a Algorithms 
653 |a Decision trees 
653 |a Cybersecurity 
773 0 |t Programming and Computer Software  |g vol. 50, no. 8 (Dec 2024), p. 562 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3154524532/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3154524532/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3154524532/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch