SPAM: An Enhanced Performance of Security and Privacy-Aware Model over Split Learning in Consumer Electronics

Guardat en:
Dades bibliogràfiques
Publicat a:Programming and Computer Software vol. 50, no. 8 (Dec 2024), p. 875
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3154524580
003 UK-CbPIL
022 |a 0361-7688 
022 |a 1608-3261 
024 7 |a 10.1134/S0361768824700816  |2 doi 
035 |a 3154524580 
045 2 |b d20241201  |b d20241231 
245 1 |a SPAM: An Enhanced Performance of Security and Privacy-Aware Model over Split Learning in Consumer Electronics 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a The use of consumer electronics has grown drastically in recent times due to advancements in technology. It has resulted in users expecting privacy and security from data shared over these devices. Split learning has become a widespread technique in providing these assurances. It is necessary to extend it further. That resulted in a model where the traditional approach has more performance resources and a more security-aware/privacy-aware alternative. This superior performance is explained by the fact that It has a more detailed implementation than the split learning approach. Provides data leak prevention to meet different use cases, including (but not limited to) the ability to protect data at rest, in motion, and while in use. Therefore, it can enhance transaction speed and latency over split learning. The security and privacy-aware view helps the user by providing options to secure his data while the prevention relationship improves usability. It can also lead to greater data type flexibility in networks. SPAM crawled results in proposed 0.05135 FDR, where Pth: 1 results with fdr > This caused the programmable security and privacy-aware model to far outstrip Split learning in terms of performance, making it a good candidate for encrypting consumer electronics-transmitted data. It provides a secure, responsive means for users to exchange information while at the same time promising that user privacy is well considered. 
653 |a Electronics 
653 |a Consumer electronics 
653 |a Machine learning 
653 |a Software 
653 |a Personal information 
653 |a Performance enhancement 
653 |a User experience 
653 |a Security 
653 |a Learning 
653 |a Artificial intelligence 
653 |a Fog 
653 |a Privacy 
653 |a Electronics industry 
653 |a Cost control 
653 |a Crowdsourcing 
653 |a Access control 
653 |a Energy consumption 
773 0 |t Programming and Computer Software  |g vol. 50, no. 8 (Dec 2024), p. 875 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3154524580/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3154524580/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3154524580/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch