Short-term coalbed methane concentration prediction and early warning based on the STL-ENN-GRU hybrid model

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Earth Science Informatics vol. 18, no. 1 (Jan 2025), p. 167
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3154990484
003 UK-CbPIL
022 |a 1865-0473 
022 |a 1865-0481 
024 7 |a 10.1007/s12145-025-01704-4  |2 doi 
035 |a 3154990484 
045 2 |b d20250101  |b d20250131 
084 |a 109043  |2 nlm 
245 1 |a Short-term coalbed methane concentration prediction and early warning based on the STL-ENN-GRU hybrid model 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Coalbed methane (CBM) disasters are a major safety problem in coal mining, it is very important to accurately predict the concentration of CBM. Traditional prediction methods have shortcomings such as low prediction accuracy, inability to multi-step prediction, and insufficient data relationship mining. In this study, a hybrid model based on STL-ENN-GRU is proposed to predict short-term CBM concentration by analyzing a large amount of CBM measured data. First, the model establishes multi-dimensional data relationships through time-series decomposition. Then the multi-feature gated recurrent unit (GRU) prediction model is constructed to mine the implicit relationship between data and suppress the noise. Meanwhile, a hybrid strategy combining recursion and convolution is introduced to enhance the prediction model’s ability to memorize long-term relationships. On this basis, a CBM concentration warning platform based on edge computing is proposed by combining intelligent hardware. The proposed model was experimentally validated using four datasets collected from a mine in Shaanxi Coal Industry Company Limited (China). The results demonstrate that the proposed model exhibits the superior prediction accuracy and robust generalization capabilities compared to the baseline model. The root-mean-square error, mean absolute error, and R2<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="12145_2025_1704_Article_IEq1.gif" /> for the 3-hour prediction of CBM concentration are 0.018%, 0.0255%, and 0.965, respectively, the prediction accuracies are notably superior to those of other hybrid models. The early warning platform established on this model achieves a millisecond-level early warning response, demonstrating high efficiency and safety. It can offer auxiliary decision support for coal mine safety operations and CBM disaster prevention and control. 
653 |a Accuracy 
653 |a Coal mining 
653 |a Data mining 
653 |a Coal industry 
653 |a Prediction models 
653 |a Noise prediction 
653 |a Methane 
653 |a Coalbed methane 
653 |a Occupational safety 
653 |a Edge computing 
653 |a Multidimensional data 
653 |a Multidimensional methods 
653 |a Coal mines 
653 |a Dimensional analysis 
653 |a Emergency preparedness 
653 |a Mining accidents & safety 
653 |a Economic 
773 0 |t Earth Science Informatics  |g vol. 18, no. 1 (Jan 2025), p. 167 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3154990484/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3154990484/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch