Analysis of borehole strain anomalies before the 2017 Jiuzhaigou Ms 7.0 earthquake based on a graph neural network

Guardado en:
Detalles Bibliográficos
Publicado en:Natural Hazards and Earth System Sciences vol. 25, no. 1 (2025), p. 231
Autor principal: Li, Chenyang
Otros Autores: Qin, Changfeng, Zhang, Jie, Duan, Yu, Chi, Chengquan
Publicado:
Copernicus GmbH
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3154997984
003 UK-CbPIL
022 |a 1561-8633 
022 |a 1684-9981 
024 7 |a 10.5194/nhess-25-231-2025  |2 doi 
035 |a 3154997984 
045 2 |b d20250101  |b d20251231 
084 |a 123633  |2 nlm 
100 1 |a Li, Chenyang  |u School of Information Science and Technology, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, 571158, China 
245 1 |a Analysis of borehole strain anomalies before the 2017 Jiuzhaigou Ms 7.0 earthquake based on a graph neural network 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a On 8 August 2017, a strong earthquake of magnitude 7.0 occurred in Jiuzhaigou, Sichuan Province, China. To assess pre-earthquake anomalies, we utilized variational mode decomposition to preprocess borehole strain observation data and combined them with a graph WaveNet neural network model to process data from multiple stations. We obtained 1-year data from four stations near the epicenter as the training dataset and data from 1 January to 10 August 2017 as the test dataset. For the prediction results of the variational mode decomposition–graph WaveNet model, the anomalous days were extracted using statistical methods, and the results of anomalous-day accumulation at multiple stations showed that an increase in the number of anomalous days occurred 15–32 d before the earthquake. The acceleration effect of anomalous accumulation was most obvious 20 d before the earthquake, and an increase in the number of anomalous days also occurred in the 1 to 3 d post-earthquake. We tentatively deduce that the pre-earthquake anomalies are caused by the diffusion of strain energy near the epicenter during the accumulation process, which can be used as a signal of pre-seismic anomalies, whereas the post-earthquake anomalies are caused by the frequent occurrence of aftershocks. 
653 |a Earthquakes 
653 |a Boreholes 
653 |a Wavelet transforms 
653 |a Strain analysis 
653 |a Topography 
653 |a Signal processing 
653 |a Accumulation 
653 |a Neural networks 
653 |a Data analysis 
653 |a Statistical methods 
653 |a Statistical models 
653 |a Case studies 
653 |a Datasets 
653 |a Seismic activity 
653 |a Fourier transforms 
653 |a Graph neural networks 
653 |a Earthquake prediction 
653 |a Decomposition 
653 |a Methods 
653 |a Anomalies 
653 |a Strain energy 
653 |a Environmental 
700 1 |a Qin, Changfeng  |u School of Information Science and Technology, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, 571158, China 
700 1 |a Zhang, Jie  |u School of Information Science and Technology, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, 571158, China 
700 1 |a Duan, Yu  |u School of Information Science and Technology, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, 571158, China 
700 1 |a Chi, Chengquan  |u School of Information Science and Technology, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, 571158, China 
773 0 |t Natural Hazards and Earth System Sciences  |g vol. 25, no. 1 (2025), p. 231 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3154997984/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3154997984/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3154997984/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch