Cleanet: robust doublet detection in cytometry data based on protein expression patterns

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:bioRxiv (Jan 14, 2025)
المؤلف الرئيسي: Ionita, Matei
مؤلفون آخرون: Mckeague, Michelle L, Painter, Mark M, Mathew, Divij M, Ajinkya Pattekar, Maseda, Damian, Wherry, E John, Greenplate, Allison R
منشور في:
Cold Spring Harbor Laboratory Press
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3155458438
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.09.632259  |2 doi 
035 |a 3155458438 
045 0 |b d20250114 
100 1 |a Ionita, Matei 
245 1 |a Cleanet: robust doublet detection in cytometry data based on protein expression patterns 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 14, 2025 
513 |a Working Paper 
520 3 |a Flow and mass cytometry experiments are essential for profiling immune cells at single cell resolution. Better understanding of human immunology increasingly involves analyzing studies at the scale of hundreds or thousands of samples, with data analysis a significant bottleneck. This trend increases the demand for automated analysis methods. In particular, a common preprocessing step in cytometry data analysis is distinguishing single cells from doublets (or multiplets), events in which two (or more) cells pass simultaneously through the detector. Typically, doublets are identified on two-dimensional density plots, using their high measured values for DNA intercalators (mass cytometry) or scattering channels (flow cytometry). Despite its popularity, this bivariate gating method is sometimes imprecise: for example, we show that bivariate gating of mass cytometry data can mistake single eosinophils for doublets, due to their high DNA content. Taking inspiration from methods already used in single cell transcriptomics, but not in the cytometry community, we propose an alternative approach. Our method, called Cleanet, first simulates doublet events, then identifies true events with protein expression similar to the simulated doublets. This simple method is completely automated and detects both homotypic and heterotypic doublets. We validate it in datasets acquired with mass and flow cytometry; moreover, we verify with imaging flow cytometry that events predicted to be doublets truly consist of multiple cells. Cleanet can also classify doublets based on their component cell types, which potentially enables the study of cell-cell interactions, mining extra information out of doublet events that would otherwise be discarded. As a proof of concept, we demonstrate that Cleanet can detect a treatment-specific increase in interactions between two cell lines. By automating doublet detection and classification, we aim to streamline the data analysis in large cytometry studies and provide a more accurate picture of both immune cell populations and cell-cell interactions.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Data processing 
653 |a Data analysis 
653 |a Cell interactions 
653 |a Leukocytes (eosinophilic) 
653 |a Flow cytometry 
653 |a Transcriptomics 
653 |a Channel gating 
653 |a Automation 
653 |a Population studies 
653 |a Cell lines 
653 |a Protein expression 
700 1 |a Mckeague, Michelle L 
700 1 |a Painter, Mark M 
700 1 |a Mathew, Divij M 
700 1 |a Ajinkya Pattekar 
700 1 |a Maseda, Damian 
700 1 |a Wherry, E John 
700 1 |a Greenplate, Allison R 
773 0 |t bioRxiv  |g (Jan 14, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3155458438/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.09.632259v1