Oncodrive3D: Fast and accurate detection of structural clusters of somatic mutations under positive selection

Gardado en:
Detalles Bibliográficos
Publicado en:bioRxiv (Feb 5, 2025)
Autor Principal: Pellegrini, Stefano
Outros autores: Dove, Olivia, Muinos, Ferran, Lopez-Bigas, Nuria, Gonzalez-Perez, Abel
Publicado:
Cold Spring Harbor Laboratory Press
Materias:
Acceso en liña:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3155458481
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.11.632354  |2 doi 
035 |a 3155458481 
045 0 |b d20250205 
100 1 |a Pellegrini, Stefano 
245 1 |a Oncodrive3D: Fast and accurate detection of structural clusters of somatic mutations under positive selection 
260 |b Cold Spring Harbor Laboratory Press  |c Feb 5, 2025 
513 |a Working Paper 
520 3 |a Identifying the genes capable of driving tumorigenesis in different tissues is one of the central goals of cancer genomics. Computational methods that exploit different signals of positive selection in the pattern of mutations observed in genes across tumors have been developed to this end. One such signal of positive selection is clustering of mutations in areas of the three-dimensional (3D) structure of the protein above the expectation under neutrality. Methods that exploit this signal have been hindered by the paucity in proteins with experimentally solved 3D structures covering their entire sequence. Here, we present Oncodrive3D, a computational method that by exploiting AlphaFold 2 structural models extends the identification of proteins with significant mutational 3D clusters to the entire human proteome. Oncodrive3D shows sensitivity and specificity on par with state-of-the-art cancer driver gene identification methods exploiting mutational clustering, and clearly outperforms them in computational efficiency. We demonstrate, through several examples, how significant mutational 3D clusters identified by Oncodrive3D in different known or potential cancer driver genes can reveal details about the mechanism of tumorigenesis in different cancer types and in clonal hematopoiesis.Competing Interest StatementThe authors have declared no competing interest.Footnotes* We have updated the author list, to include Olivia Dove. The omission was a mistake in the previous version. 
653 |a Cancer 
653 |a Tumorigenesis 
653 |a Proteomes 
653 |a Positive selection 
653 |a Computer applications 
653 |a Protein structure 
653 |a Hemopoiesis 
653 |a Genomics 
653 |a Mutation 
653 |a Amino acid sequence 
700 1 |a Dove, Olivia 
700 1 |a Muinos, Ferran 
700 1 |a Lopez-Bigas, Nuria 
700 1 |a Gonzalez-Perez, Abel 
773 0 |t bioRxiv  |g (Feb 5, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3155458481/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.11.632354v3