Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS)

Salvato in:
Dettagli Bibliografici
Pubblicato in:Nature Communications vol. 16, no. 1 (2025), p. 667
Pubblicazione:
Nature Publishing Group
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3155469352
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-55986-9  |2 doi 
035 |a 3155469352 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
245 1 |a Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS) 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS). Using a fixed-energy primer design, we demonstrate the unbiasedness of MPHAC for amplifying 100,000-plex sequences. Simulations reveal that MPHAC achieves a fold-80 value of 1.0 compared to 3.2 with conventional fixed-length primers, lowering costs by up to four orders of magnitude through reduced over-sequencing. The MPHAC-DIS system using 35,406 encoded oligonucleotide allows simultaneous access of multimedia files including text, images, and videos with high decoding accuracy at very low sequencing depths. Specifically, even a ~ 1 ×  sequencing depth, with the combination of machine learning, results in an acceptable decoding accuracy of ~80%. The programmable and predictable MPHAC-DIS method thus opens new door for DNA-based large-scale data storage with potential industrial applications.Chip-scale DNA synthesis enables large-scale DNA data storage, but unbiased retrieval remains challenging. Here, authors introduce MPHAC-DIS, an energy-based amplification strategy enabling unbiased, high-accuracy DNA data retrieval, significantly reducing costs and enhancing data accessibility. 
653 |a Accuracy 
653 |a Oligonucleotides 
653 |a DNA biosynthesis 
653 |a Industrial applications 
653 |a Information storage 
653 |a Gene sequencing 
653 |a Information retrieval 
653 |a Hybridization 
653 |a Deoxyribonucleic acid--DNA 
653 |a Data storage 
653 |a Cost reduction 
653 |a Information processing 
653 |a Nucleotide sequence 
653 |a Machine learning 
653 |a Cost control 
653 |a Synthesis 
653 |a Data retrieval 
653 |a Environmental 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 667 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3155469352/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3155469352/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch