Utilizing contemporary machine learning techniques for determining soilcrete properties

Shranjeno v:
Bibliografske podrobnosti
izdano v:Earth Science Informatics vol. 18, no. 1 (Jan 2025), p. 176
Izdano:
Springer Nature B.V.
Teme:
Online dostop:Citation/Abstract
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3155469962
003 UK-CbPIL
022 |a 1865-0473 
022 |a 1865-0481 
024 7 |a 10.1007/s12145-024-01520-2  |2 doi 
035 |a 3155469962 
045 2 |b d20250101  |b d20250131 
084 |a 109043  |2 nlm 
245 1 |a Utilizing contemporary machine learning techniques for determining soilcrete properties 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Soilcrete is an innovative construction material made by combining naturally occurring earth materials with cement. It can be effectively used in areas where other construction materials are not readily available due to financial or environmental reasons since soilcrete is made from readily available natural clay. It can also help to cut down the greenhouse gas emissions from the construction industry by encouraging the use of resources that are locally available. Thus, it is imperative to reliably predict different properties of soilcrete since the accurate determination of these properties is crucial for the widespread use of soilcrete materials. However, the laboratory determination of these properties is subjected to significant time and resource constraints. As a result, this research was undertaken to provide empirical prediction models for the density, shrinkage, and strain of soilcrete mixes using two machine learning algorithms: Gene Expression Programming (GEP) and Extreme Gradient Boosting (XGB). The analysis revealed that XGB-based predictions correlated more with real-life values than GEP having training R2=0.999<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="12145_2024_1520_Article_IEq1.gif" /> for both density and shrinkage prediction and R2=0.944<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="12145_2024_1520_Article_IEq2.gif" /> for strain prediction. Moreover, several explanatory analyses including individual conditional expectation (ICE) analysis and shapely analysis were done on the XGB model which showed that water-to-binder ratio, metakaolin content, and modulus of elasticity are some of the most important variables for forecasting soilcrete materials properties. Furthermore, an interactive graphical user interface (GUI) has been developed for effective utilization in civil engineering industry to forecast these properties of soilcrete materials. 
653 |a Mechanical properties 
653 |a Material properties 
653 |a Construction materials 
653 |a Emissions 
653 |a Strain analysis 
653 |a Civil engineering 
653 |a Aggregates 
653 |a Graphical user interface 
653 |a Greenhouse gases 
653 |a Machine learning 
653 |a Density 
653 |a User interface 
653 |a Concrete mixing 
653 |a Construction industry 
653 |a Artificial intelligence 
653 |a Modulus of elasticity 
653 |a Gene expression 
653 |a Prediction models 
653 |a Permeability 
653 |a Carbon dioxide 
653 |a Construction costs 
653 |a Algorithms 
653 |a Earth science 
653 |a Industrial development 
653 |a Soil properties 
653 |a Cement 
653 |a Informatics 
653 |a Metakaolin 
653 |a Economic 
653 |a Environmental 
773 0 |t Earth Science Informatics  |g vol. 18, no. 1 (Jan 2025), p. 176 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3155469962/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3155469962/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch