Analysis of RL electric circuits modeled by fractional Riccati IVP via Jacobi-Broyden Newton algorithm

Guardado en:
Bibliografiske detaljer
Udgivet i:PLoS One vol. 20, no. 1 (Jan 2025), p. e0316348
Hovedforfatter: Mahmoud Abd El-Hady
Andre forfattere: El-Gamel, Mohamed, Homan Emadifar, El-shenawy, Atallah
Udgivet:
Public Library of Science
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3155638641
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0316348  |2 doi 
035 |a 3155638641 
045 2 |b d20250101  |b d20250131 
084 |a 174835  |2 nlm 
100 1 |a Mahmoud Abd El-Hady 
245 1 |a Analysis of RL electric circuits modeled by fractional Riccati IVP via Jacobi-Broyden Newton algorithm 
260 |b Public Library of Science  |c Jan 2025 
513 |a Journal Article 
520 3 |a This paper focuses on modeling Resistor-Inductor (RL) electric circuits using a fractional Riccati initial value problem (IVP) framework. Conventional models frequently neglect the complex dynamics and memory effects intrinsic to actual RL circuits. This study aims to develop a more precise representation using a fractional-order Riccati model. We present a Jacobi collocation method combined with the Jacobi-Newton algorithm to address the fractional Riccati initial value problem. This numerical method utilizes the characteristics of Jacobi polynomials to accurately approximate solutions to the nonlinear fractional differential equation. We obtain the requisite Jacobi operational matrices for the discretization of fractional derivatives, therefore converting the initial value problem into a system of algebraic equations. The convergence and precision of the proposed algorithm are meticulously evaluated by error and residual analysis. The theoretical findings demonstrate that the method attains high-order convergence rates, dependent on suitable criteria related to the fractional-order parameters and the solution’s smoothness. This study not only improves comprehension of RL circuit dynamics but also offers a solid numerical foundation for addressing intricate fractional differential equations. 
653 |a Mathematical analysis 
653 |a Algorithms 
653 |a Polynomials 
653 |a Collocation methods 
653 |a Circuits 
653 |a Inductors 
653 |a Error analysis 
653 |a Convergence 
653 |a Numerical methods 
653 |a Boundary value problems 
653 |a Order parameters 
653 |a Partial differential equations 
653 |a Smoothness 
653 |a RL circuits 
653 |a Computer engineering 
653 |a Methods 
653 |a Fractional calculus 
653 |a Differential equations 
653 |a Mathematical models 
653 |a Ordinary differential equations 
653 |a Environmental 
700 1 |a El-Gamel, Mohamed 
700 1 |a Homan Emadifar 
700 1 |a El-shenawy, Atallah 
773 0 |t PLoS One  |g vol. 20, no. 1 (Jan 2025), p. e0316348 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3155638641/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3155638641/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3155638641/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch