A decision-analytic method to evaluate the cost-effectiveness of remote monitoring technology for chronic depression

Guardado en:
Bibliografiske detaljer
Udgivet i:International Journal of Technology Assessment in Health Care vol. 40, no. 1 (Jan 2025)
Hovedforfatter: Sun, Xiaonan
Andre forfattere: Wissow, Lawrence, Liu, Shan
Udgivet:
Cambridge University Press
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3155894801
003 UK-CbPIL
022 |a 0266-4623 
022 |a 1471-6348 
024 7 |a 10.1017/S0266462324004677  |2 doi 
035 |a 3155894801 
045 2 |b d20250101  |b d20250228 
084 |a 79035  |2 nlm 
100 1 |a Sun, Xiaonan  |u Department of Industrial and Systems Engineering, University of Washington, Seattle, WA, USA 
245 1 |a A decision-analytic method to evaluate the cost-effectiveness of remote monitoring technology for chronic depression 
260 |b Cambridge University Press  |c Jan 2025 
513 |a Journal Article 
520 3 |a ObjectivesAdvances in mobile apps, remote sensing, and big data have enabled remote monitoring of mental health conditions, but the cost-effectiveness is unknown. This study proposed a systematic framework integrating computational tools and decision-analytic modeling to assess cost-effectiveness and guide emerging monitoring technologies development.MethodsUsing a novel decision-analytic Markov-cohort model, we simulated chronic depression patients’ disease progression over 2 years, allowing treatment modifications at follow-up visits. The cost-effectiveness, from a payer’s viewpoint, of five monitoring strategies was evaluated for patients in low-, medium-, and high-risk groups: (i) remote monitoring technology scheduling follow-up visits upon detecting treatment change necessity; (ii) rule-based follow-up strategy assigning the next follow-up based on the patient’s current health state; and (iii–v) fixed frequency follow-up at two-month, four-month, and six-month intervals. Health outcomes (effects) were measured in quality-adjusted life-years (QALYs).ResultsBase case results showed that remote monitoring technology is cost-effective in the three risk groups under a willingness-to-pay (WTP) threshold of U.S. GDP per capita in year 2023. Full scenario analyses showed that, compared to rule-based follow-up, remote technology is 74 percent, 67 percent, and 74 percent cost-effective in the high-risk, medium-risk, and low-risk groups, respectively, and it is cost-effective especially if the treatment is effective and if remote monitoring is highly sensitive and specific.ConclusionsRemote monitoring for chronic depression proves cost-effective and potentially cost-saving in the majority of simulated scenarios. This framework can assess emerging remote monitoring technologies and identify requirements for the technologies to be cost-effective in psychiatric and chronic care delivery. 
653 |a Patients 
653 |a Remote sensing 
653 |a Simulation 
653 |a Electronic health records 
653 |a Datasets 
653 |a Applications programs 
653 |a Telemedicine 
653 |a Mental disorders 
653 |a Questionnaires 
653 |a Mobile computing 
653 |a Remote monitoring 
653 |a Design specifications 
653 |a Cost analysis 
653 |a Mental depression 
653 |a Mental health 
653 |a Risk groups 
653 |a Risk 
653 |a Software 
653 |a Evaluation 
653 |a Cost effectiveness 
653 |a Outpatient care facilities 
653 |a Medical technology 
653 |a Monitoring systems 
700 1 |a Wissow, Lawrence  |u Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA 
700 1 |a Liu, Shan  |u Department of Industrial and Systems Engineering, University of Washington, Seattle, WA, USA 
773 0 |t International Journal of Technology Assessment in Health Care  |g vol. 40, no. 1 (Jan 2025) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3155894801/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3155894801/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3155894801/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch