Intelligent information systems for power grid fault analysis by computer communication technology

Spremljeno u:
Bibliografski detalji
Izdano u:Energy Informatics vol. 8, no. 1 (Dec 2025), p. 10
Izdano:
Springer Nature B.V.
Teme:
Online pristup:Citation/Abstract
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3156274796
003 UK-CbPIL
022 |a 2520-8942 
024 7 |a 10.1186/s42162-024-00465-6  |2 doi 
035 |a 3156274796 
045 2 |b d20251201  |b d20251231 
245 1 |a Intelligent information systems for power grid fault analysis by computer communication technology 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a This study aims to enhance the intelligence level of power grid fault analysis to address increasingly complex fault scenarios and ensure grid stability and security. To this end, an intelligent information system for power grid fault analysis, leveraging improved computer communication technology, is proposed and developed. The system incorporates a novel fault diagnosis model, combining advanced communication technologies such as distributed computing, real-time data transmission, cloud computing, and big data analytics, to establish a multi-layered information processing architecture for grid fault analysis. Specifically, this study introduces a fusion model integrating Transformer self-attention mechanisms with graph neural networks (GNNs) based on conventional fault diagnosis techniques. GNNs capture the complex relationships between different nodes within the grid topology, effectively identifying power transmission characteristics and fault propagation paths across grid nodes. The Transformer’s self-attention mechanism processes time-series operational data from the grid, enabling precise identification of temporal dependencies in fault characteristics. To improve system response speed, edge computing moves portions of fault data preprocessing and analysis to edge nodes near data sources, significantly reducing transmission latency and enhancing real-time diagnosis capability. Experimental results demonstrate that the proposed model achieves superior diagnostic performance across various fault types (e.g., short circuits, overloads, equipment failures) in simulation scenarios. The system achieves a fault identification and location accuracy of 99.2%, an improvement of over 10% compared to traditional methods, with an average response time of 85 milliseconds, approximately 43% faster than existing technologies. Moreover, the system exhibits strong robustness in complex scenarios, with an average fault prediction error rate of just 1.1% across multiple simulations. This study provides a novel solution for intelligent power grid fault diagnosis and management, establishing a technological foundation for smart grid operations. 
653 |a Data processing 
653 |a Big Data 
653 |a Information systems 
653 |a Multilayers 
653 |a Communication 
653 |a Electricity distribution 
653 |a Edge computing 
653 |a Nodes 
653 |a Topology 
653 |a Data transmission 
653 |a Electric power grids 
653 |a Smart grid 
653 |a Distributed processing 
653 |a Data analysis 
653 |a Fault diagnosis 
653 |a Graph neural networks 
653 |a Cloud computing 
653 |a Network latency 
653 |a Communications systems 
653 |a Short circuits 
653 |a Real time 
653 |a Economic 
773 0 |t Energy Informatics  |g vol. 8, no. 1 (Dec 2025), p. 10 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3156274796/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3156274796/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch