Spectral framework using modified shifted Chebyshev polynomials of the third-kind for numerical solutions of one- and two-dimensional hyperbolic telegraph equations

保存先:
書誌詳細
出版年:Boundary Value Problems vol. 2025, no. 1 (Dec 2025), p. 7
出版事項:
Hindawi Limited
主題:
オンライン・アクセス:Citation/Abstract
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3156307742
003 UK-CbPIL
022 |a 1687-2762 
022 |a 1687-2770 
024 7 |a 10.1186/s13661-024-01987-4  |2 doi 
035 |a 3156307742 
045 2 |b d20251201  |b d20251231 
084 |a 130309  |2 nlm 
245 1 |a Spectral framework using modified shifted Chebyshev polynomials of the third-kind for numerical solutions of one- and two-dimensional hyperbolic telegraph equations 
260 |b Hindawi Limited  |c Dec 2025 
513 |a Journal Article 
520 3 |a This investigation discusses a numerical approach to solving the hyperbolic telegraph equation in both one and two dimensions. Applying the Galerkin method is the basis of this approach. We use appropriate combinations of third-kind modified shifted Chebyshev polynomials (3KMSCPs) as basis functions to transform the governing partial differential equations into a collection of algebraic equations. Through spectral Galerkin techniques, we establish the convergence error to demonstrate that our algorithm is more effective and efficient. Five examples are examined to verify the effectiveness and resilience of the applied method by comparing errors and illustrating the results. Our results show that the current numerical solutions align closely with exact solutions. The current algorithm is simple to set up and is better suited to solving certain difficult partial differential equations. 
653 |a Chebyshev approximation 
653 |a Basis functions 
653 |a Exact solutions 
653 |a Algorithms 
653 |a Mathematical analysis 
653 |a Galerkin method 
653 |a Polynomials 
653 |a Effectiveness 
653 |a Partial differential equations 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Methods 
653 |a Boundary conditions 
653 |a Boundary value problems 
773 0 |t Boundary Value Problems  |g vol. 2025, no. 1 (Dec 2025), p. 7 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3156307742/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3156307742/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch