Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation

Guardat en:
Dades bibliogràfiques
Publicat a:PLoS One vol. 20, no. 1 (Jan 2025), p. e0315538
Autor principal: Sarafraz, Iran
Altres autors: Agahi, Hamed, Mahmoodzadeh, Azar
Publicat:
Public Library of Science
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3156772610
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0315538  |2 doi 
035 |a 3156772610 
045 2 |b d20250101  |b d20250131 
084 |a 174835  |2 nlm 
100 1 |a Sarafraz, Iran 
245 1 |a Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation 
260 |b Public Library of Science  |c Jan 2025 
513 |a Journal Article 
520 3 |a CNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure and parameters for these models to achieve the desired results. In this article, an adaptive method for CNN automatic configuration for neonatal brain image segmentation is presented based on the encoder-decoder structure, in which the hyperparameters of this network, i.e., size, length, and width of the filter in each layer along with the type of pooling functions with a reinforcement learning approach and an LA model are determined. These LA models determine the optimal configuration for the CNN model by using DICE and ASD segmentation quality evaluation criteria, so that the segmentation quality can be maximized based on the goal criteria. The effectiveness of the proposed method has been evaluated using a database of infant MRI images and the results have been compared with previous methods. The results show that by using the proposed method, it is possible to segment NBI with higher quality and accuracy. 
653 |a Neonates 
653 |a Quality assessment 
653 |a Neuroimaging 
653 |a Deep learning 
653 |a Image segmentation 
653 |a Image filters 
653 |a Artificial neural networks 
653 |a Medical imaging 
653 |a Neural networks 
653 |a Criteria 
653 |a Brain 
653 |a Image processing 
653 |a Encoders-Decoders 
653 |a Image quality 
653 |a Machine learning 
653 |a Configurations 
653 |a Magnetic resonance imaging 
653 |a Image processing systems 
653 |a Economic 
700 1 |a Agahi, Hamed 
700 1 |a Mahmoodzadeh, Azar 
773 0 |t PLoS One  |g vol. 20, no. 1 (Jan 2025), p. e0315538 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3156772610/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3156772610/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3156772610/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch