Optimizing survey conditions for Burmese python detection and removal using community science data

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 2421
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3156879083
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-024-84641-4  |2 doi 
035 |a 3156879083 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
245 1 |a Optimizing survey conditions for Burmese python detection and removal using community science data 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Burmese pythons (Python bivittatus) have demonstrated prolific spread and low detectability within their invasive range in Florida, USA. Consequently, programs exist which incentivize contractors to remove pythons. While surveying, contractors collect data on search effort and python captures. We examined data from South Florida Water Management District’s Python Elimination Program to determine the effect of operational and environmental covariates on two measures of survey outcome: success (i.e., probability of removing at least one python) and efficiency (i.e., the number of pythons removed per survey hour). Additionally, we assessed the spatial distribution of contractor search effort and removals. Warm temperatures (> 25 °C) improve survey outcomes, especially when surveys occur late at night and during the wet season (May–Oct). The most efficient interval for conducting surveys occurs from 20:00 to 02:00. The spatial distribution of python removals is concentrated in four regions and coincides with contractor search effort. Our results provide insights into optimizing removal efforts for invasive Burmese pythons in Florida, which may allow for increases in removal efficiency. Moreover, this study demonstrates that community science data can be used to synthesize recommendations for invasive species removal efforts. 
651 4 |a United States--US 
651 4 |a Florida 
653 |a Geographical distribution 
653 |a Invasive species 
653 |a Spatial distribution 
653 |a Water management 
653 |a Contractors 
653 |a Introduced species 
653 |a Rainy season 
653 |a Surveys 
653 |a Polls & surveys 
653 |a Science 
653 |a Success 
653 |a Roads & highways 
653 |a Community 
653 |a Canals 
653 |a Efficiency 
653 |a Wildlife conservation 
653 |a Ecology 
653 |a Probability 
653 |a Data collection 
653 |a Snakes 
653 |a Environmental protection 
653 |a National parks 
653 |a Nonnative species 
653 |a Social 
653 |a Environmental 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 2421 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3156879083/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3156879083/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch