Algorithmic Business Process Optimization: Empowering Operational Excellence with Service-Oriented Architecture (SOA) and Microservices

Guardat en:
Dades bibliogràfiques
Publicat a:Ingenierie des Systemes d'Information vol. 29, no. 6 (Dec 2024), p. 2399
Autor principal: Fatima Zohra Trabelsi
Altres autors: Khtira, Amal, Bouchra El Asri
Publicat:
International Information and Engineering Technology Association (IIETA)
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3157167253
003 UK-CbPIL
022 |a 1633-1311 
022 |a 2116-7125 
022 |a 1290-2926 
024 7 |a 10.18280/isi.290627  |2 doi 
035 |a 3157167253 
045 2 |b d20241201  |b d20241231 
100 1 |a Fatima Zohra Trabelsi 
245 1 |a Algorithmic Business Process Optimization: Empowering Operational Excellence with Service-Oriented Architecture (SOA) and Microservices 
260 |b International Information and Engineering Technology Association (IIETA)  |c Dec 2024 
513 |a Journal Article 
520 3 |a This paper introduces a novel approach to optimizing business processes by integrating principles from Service-Oriented Architecture (SOA), micro-services, and recommendation systems. Our approach leverages specific machine learning techniques such as clustering algorithms for behavioral segmentation and association rule mining for pattern identification, combined with data-driven insights derived from real-time process data. We propose a comprehensive algorithm that identifies inefficiencies in existing workflows, utilizing K-Means clustering and Apriori-based association rule mining to recommend optimized, modular architectures based on interoperable services. Additionally, the system provides personalized recommendations for ongoing improvements using predictive models. Through a detailed implementation, we demonstrate how our method enhances operational efficiency by reducing process redundancies, scalability through modular micro-services, and user satisfaction by streamlining service delivery. Preliminary results from case studies in the e-commerce and financial services sectors show up to 20% improvement in process execution time and 15% increase in customer satisfaction. Our approach differentiates itself from existing methods by offering a seamless integration of modular service architectures with real-time optimization and personalized feedback, creating a continuous improvement loop that adapts to changing business conditions. Finally, we discuss future research directions, including refining recommendation models, developing real-time optimization capabilities, and exploring applications in industry-specific contexts. 
653 |a Software 
653 |a Customer satisfaction 
653 |a Recommender systems 
653 |a Computer architecture 
653 |a Competitive advantage 
653 |a Adaptability 
653 |a Trends 
653 |a Business process management 
653 |a Continuous improvement 
653 |a Data analysis 
653 |a Modularity 
653 |a Automation 
653 |a Machine learning 
653 |a Service oriented architecture 
653 |a Customization 
653 |a Internet of Things 
653 |a Case studies 
653 |a Innovations 
653 |a Data mining 
653 |a Cluster analysis 
653 |a Artificial intelligence 
653 |a Edge computing 
653 |a Modular systems 
653 |a Prediction models 
653 |a User satisfaction 
653 |a Clustering 
653 |a Decision making 
653 |a Cost reduction 
653 |a Empowerment 
653 |a Optimization 
653 |a Flexibility 
653 |a Industrial applications 
653 |a Algorithms 
653 |a Supply chains 
653 |a Blockchain 
653 |a Industrial development 
653 |a Real time 
653 |a Cloud computing 
653 |a Financial services 
653 |a Customer services 
653 |a Vector quantization 
653 |a Product development 
700 1 |a Khtira, Amal 
700 1 |a Bouchra El Asri 
773 0 |t Ingenierie des Systemes d'Information  |g vol. 29, no. 6 (Dec 2024), p. 2399 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3157167253/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3157167253/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch