Strategy Analysis of Mobile Edge Computing Based on EC-ANN in Task Vehicle Cooperative Unloading

Saved in:
Bibliographic Details
Published in:Informatica vol. 48, no. 22 (Dec 2024), p. 179
Main Author: Wang, Chenwei
Other Authors: Li, Xiating
Published:
Slovenian Society Informatika / Slovensko drustvo Informatika
Subjects:
Online Access:Citation/Abstract
Full Text
Full Text - PDF
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3157227869
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v48i22.5973  |2 doi 
035 |a 3157227869 
045 2 |b d20241201  |b d20241231 
084 |a 179436  |2 nlm 
100 1 |a Wang, Chenwei 
245 1 |a Strategy Analysis of Mobile Edge Computing Based on EC-ANN in Task Vehicle Cooperative Unloading 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c Dec 2024 
513 |a Journal Article 
520 3 |a To improve the performance and reliability of task vehicle collaborative unloading, the study adopted Monte Carlo tree search and deep neural networks to optimize resource allocation of task vehicles in collaborative unloading. Secondly, through multi-mode collaboration, the relay unloading task of roadside units was carried out. Meanwhile, the service range of vehicle collaborative unloading was expanded based on the calculation results, achieving the full utilization of idle computing resources. These experiments confirmed that compared to random search and greedy search, the proposed network model scheme improved service latency performance by 58.3% and 47.1%, respectively. The proposed multi-mode joint unloading mechanism had significant performance improvement under the collaborative unloading mechanism from adjacent vehicles to vehicles. It offloaded tasks to service vehicles outside the communication range, reducing completion latency by approximately 33.6%. Therefore, this task vehicle collaboration unloading method improved the performance of mobile edge computing systems, reduced computing and storage costs, and lowered the energy consumption and maintenance costs of task vehicles. This research method can improve the efficiency and safety of task vehicle collaboration unloading, providing technical support for the optimization of intelligent transportation systems. 
653 |a Collaboration 
653 |a Communication 
653 |a Artificial neural networks 
653 |a Transportation industry 
653 |a Electric vehicles 
653 |a Optimization 
653 |a Roads & highways 
653 |a Edge computing 
653 |a Resource allocation 
653 |a Mobile computing 
653 |a Transportation planning 
653 |a Intelligent transportation systems 
653 |a Probability distribution 
653 |a Energy consumption 
653 |a Efficiency 
653 |a Distributed processing 
653 |a Performance enhancement 
653 |a Maintenance costs 
653 |a Energy costs 
653 |a Experiments 
653 |a Network reliability 
653 |a Decision making 
653 |a Neural networks 
653 |a Searching 
653 |a Network latency 
653 |a Information processing 
653 |a Vehicles 
653 |a Linear programming 
653 |a Algorithms 
653 |a Logistics 
700 1 |a Li, Xiating 
773 0 |t Informatica  |g vol. 48, no. 22 (Dec 2024), p. 179 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3157227869/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3157227869/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3157227869/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch