Individually Weighted Modified Logarithmic Hyperbolic Sine Curvelet Based Recursive FLN for Nonlinear System Identification

Guardado en:
Detalles Bibliográficos
Publicado en:Circuits, Systems, and Signal Processing vol. 44, no. 1 (Jan 2025), p. 306
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3157276403
003 UK-CbPIL
022 |a 0278-081X 
022 |a 1531-5878 
024 7 |a 10.1007/s00034-024-02839-3  |2 doi 
035 |a 3157276403 
045 2 |b d20250101  |b d20250131 
084 |a 65801  |2 nlm 
245 1 |a Individually Weighted Modified Logarithmic Hyperbolic Sine Curvelet Based Recursive FLN for Nonlinear System Identification 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Lately, an adaptive exponential functional link network (AEFLN) involving exponential terms integrated with trigonometric functional expansion is being introduced as a linear-in-the-parameters nonlinear filter. However, they exhibit degraded efficacy in lieu of non-Gaussian or impulsive noise interference. Therefore, to enhance the nonlinear modelling capability, here is a modified logarithmic hyperbolic sine cost function in amalgamation with the adaptive recursive exponential functional link network. In conjugation with this, a sparsity constraint motivated by a curvelet-dependent notion is employed in the suggested approach. Therefore, this paper presents an individually weighted modified logarithmic hyperbolic sine curvelet-based recursive exponential FLN (IMLSC-REF) for robust sparse nonlinear system identification. An individually weighted adaptation gain is imparted to several coefficients corresponding to the nonlinear adaptive model for accelerating the convergence rate. The weight update rule and the maximum criteria for the convergence factor are being further derived. Exhaustive simulation studies profess the effectiveness of the introduced algorithm in case of varied nonlinearity and for identifying as well as modelling the physical path of the acoustic feedback phenomenon of a behind-the-ear (BTE) hearing aid. 
653 |a Logarithms 
653 |a Parameter identification 
653 |a Adaptive systems 
653 |a Conjugation 
653 |a Convergence 
653 |a Cost function 
653 |a Exponential functions 
653 |a Trigonometric functions 
653 |a Recursive functions 
653 |a Effectiveness 
653 |a Parameter modification 
653 |a System identification 
653 |a Nonlinear systems 
653 |a Hearing aids 
653 |a Hyperbolic functions 
653 |a Nonlinear filters 
653 |a Nonlinearity 
653 |a Adaptive algorithms 
653 |a Sparsity 
653 |a Communication 
653 |a Identification 
653 |a Optimization techniques 
653 |a Manuscripts 
653 |a Signal processing 
653 |a Adaptation 
653 |a Noise control 
653 |a Algorithms 
653 |a Acoustics 
653 |a Simulation 
773 0 |t Circuits, Systems, and Signal Processing  |g vol. 44, no. 1 (Jan 2025), p. 306 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3157276403/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3157276403/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch