Single-Source DOA Estimation for Wideband LFM Signal: Time-Delay Mixing and Enhanced Self-Mixing MUSIC Methods

Guardado en:
Detalles Bibliográficos
Publicado en:Circuits, Systems, and Signal Processing vol. 44, no. 1 (Jan 2025), p. 218
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3157279080
003 UK-CbPIL
022 |a 0278-081X 
022 |a 1531-5878 
024 7 |a 10.1007/s00034-024-02827-7  |2 doi 
035 |a 3157279080 
045 2 |b d20250101  |b d20250131 
084 |a 65801  |2 nlm 
245 1 |a Single-Source DOA Estimation for Wideband LFM Signal: Time-Delay Mixing and Enhanced Self-Mixing MUSIC Methods 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Accurately estimating the direction of arrival (DOA) of wideband signals with a sensor array is critical in communications, radar, and the Internet of Things. This paper proposes two single-source DOA estimation methods for wideband linear frequency modulation signals: time-delay mixing multiple signal classification (TDM-MUSIC) and enhanced self-mixing MUSIC (ESM-MUSIC). TDM-MUSIC employs time-delay mixing of the received signal to construct an equivalent single-frequency signal model, thereby enhancing estimation accuracy while maintaining reasonable computational efficiency. ESM-MUSIC improves the conventional self-mixing model by adding frequency correction steps, resulting in excellent DOA estimation performance at the expense of computational complexity. Unlike conventional methods that rely on approximate models, our methods establish more accurate equivalent models. A key advantage of our methods is that they allow flexible adjustment of the optimal sensor inter-element spacing in arrays based on the equivalent signal model rather than the actual signal model, simplifying engineering fabrication and reducing mutual coupling between sensors. The paper establishes the Cramér–Rao bounds for both proposed methods and demonstrates their superiority over existing methods through comprehensive numerical simulations. Further, the experiment using a TI-AWR2243 multi-sensor array radar system confirms that our methods are feasible for practical engineering applications. 
653 |a Music 
653 |a Cramer-Rao bounds 
653 |a Internet of Things 
653 |a Delay 
653 |a Radar arrays 
653 |a Numerical models 
653 |a Equivalence 
653 |a Mutual coupling 
653 |a Sensors 
653 |a Signal classification 
653 |a Radar equipment 
653 |a Sensor arrays 
653 |a Broadband 
653 |a Frequency modulation 
653 |a Direction of arrival 
653 |a Estimation 
773 0 |t Circuits, Systems, and Signal Processing  |g vol. 44, no. 1 (Jan 2025), p. 218 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3157279080/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3157279080/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch