Long-term tracking of neural and oligodendroglial development in large-scale human cerebral organoids by noninvasive volumetric imaging

Guardat en:
Dades bibliogràfiques
Publicat a:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 2536
Publicat:
Nature Publishing Group
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3157334428
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-85455-8  |2 doi 
035 |a 3157334428 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
245 1 |a Long-term tracking of neural and oligodendroglial development in large-scale human cerebral organoids by noninvasive volumetric imaging 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Human cerebral organoids serve as a quintessential model for deciphering the complexities of brain development in a three-dimensional milieu. However, imaging these organoids, particularly when they exceed several millimeters in size, has been curtailed by the technical impediments such as phototoxicity, slow imaging speeds, and inadequate resolution and imaging depth. Addressing these pivotal challenges, our study has pioneered a high-speed scanning microscope, synergistically coupled with advanced computational image processing. This ensemble has empowered us to monitor the intricate dynamics of neuron and oligodendrocyte development within cerebral organoids across a trajectory of approximately two months. Line-shaped illumination mitigates photodamage and, alongside refined spatial gating, maximizes signal collection through integrating with computational processing. The integration of deconvolution and compressive sensing has improved image contrast by 6-fold, elucidating fine features of the neurites. Thus, noninvasive imaging enabled us to perform long-term tracking of neural and oligodendroglial development in the large-scale human cerebral organoid. Furthermore, our sophisticated volumetric segmentation algorithm has yielded a robust four-dimensional quantitative analysis, encapsulating both neuronal and oligodendroglial maturation. Collectively, these advances mark a significant advancement in the field of neurodevelopment, providing a powerful tool for in-depth study of complex brain organoid systems. 
653 |a Signal processing 
653 |a Organoids 
653 |a Image processing 
653 |a Axons 
653 |a Computational neuroscience 
653 |a Information processing 
653 |a Neuroimaging 
653 |a Phototoxicity 
653 |a Neurons 
653 |a Medicine 
653 |a Microscopy 
653 |a Neurogenesis 
653 |a Brain 
653 |a Light 
653 |a Stem cells 
653 |a Visualization 
653 |a Medical schools 
653 |a Image processing systems 
653 |a Environmental 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 2536 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3157334428/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3157334428/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch