Exploring human-autonomy teaming methods in challenging environments: the case of fighter pilots and loyal wingmen

Guardado en:
Bibliografiske detaljer
Udgivet i:Human-Intelligent Systems Integration vol. 6, no. 1 (Dec 2024), p. 1
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3157769779
003 UK-CbPIL
022 |a 2524-4876 
022 |a 2524-4884 
024 7 |a 10.1007/s42454-024-00050-y  |2 doi 
035 |a 3157769779 
045 2 |b d20241201  |b d20241231 
245 1 |a Exploring human-autonomy teaming methods in challenging environments: the case of fighter pilots and loyal wingmen 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a The changes in the security environment run parallel to changes in humans and artificial cognitive systems to meet these challenges. In this article, the purpose is to discuss some human-autonomy teaming (HAT) design approaches (mechanisms for coordination): levels of automation (LOA), mixed initiative (MI), and coactive design (COAD). Specifically, we discuss how humans and artificial cognitive systems, exemplified as loyal wingmen, can be orchestrated to enable the handling of complexity and dynamics of an environment, e.g., handling military threats, and how different design trade-offs are affecting mission solutions. We also discuss some consequences of various AI/ML modes used by LW, on the utility of the HAT design approaches. Ways of using these HAT designs in a complementary way are suggested to support coordination through both plan and feedback, such as by integrating external and internal feedback in prediction of future action. We illustrate our suggestions through a use case, which provide additional nuance to our theoretical discussion. Lastly, we provide directions for future research, in particular through experimental design and the use of simulation, and provide practical implications. 
653 |a Collaboration 
653 |a Artificial intelligence 
653 |a Teams 
653 |a Communication 
653 |a Aircraft pilots 
653 |a Feedback 
653 |a Decision making 
653 |a Organization theory 
653 |a Design of experiments 
653 |a Drones 
653 |a Automation 
653 |a Autonomy 
653 |a Coordination 
773 0 |t Human-Intelligent Systems Integration  |g vol. 6, no. 1 (Dec 2024), p. 1 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3157769779/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3157769779/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3157769779/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch