STExplorer: Navigating the Micro-Geography of Spatial Omics Data

Guardat en:
Dades bibliogràfiques
Publicat a:bioRxiv (Jan 23, 2025)
Autor principal: Zormpas, Eleftherios
Altres autors: Vlachogiannis, Nikolaos I, Resteu, Anastasia, Unsworth, Adrienne, Simon Tual-Chalot, Dorgau, Birthe, Queen, Rachel, Lako, Majlinda, Tiniakos, Dina, Comber, Alexis, Anstee, Quentin M, Giakountis, Antonis, Cockell, Simon J
Publicat:
Cold Spring Harbor Laboratory Press
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3158241612
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.17.633539  |2 doi 
035 |a 3158241612 
045 0 |b d20250123 
100 1 |a Zormpas, Eleftherios 
245 1 |a STExplorer: Navigating the Micro-Geography of Spatial Omics Data 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 23, 2025 
513 |a Working Paper 
520 3 |a Spatial transcriptomics (ST) has the potential to provide unprecedented insights into gene expression across tissue architecture, but existing analytical methods often overlook the full complexity of the spatial dimension. We present STExplorer, an R package that adapts well-established computational geography (CG) methods to explore the micro-geography of spatial omics data. By incorporating techniques like Geographically Weighted Principal Component Analysis (GWPCA), Fuzzy Geographically Weighted Clustering (FGWC), Geographically Weighted Regression (GWR), and analyses of observation Spatial Autocorrelation (SA), STExplorer enables the uncovering of spatially resolved patterns that capture the spatial heterogeneity of biological data. STExplorer provides a complete suite of functions for spatial analyses and visualisations, supporting deeper biological understanding and inference. Built on the Bioconductor ecosystem, the package integrates with SpatialFeatureExperiment objects, ensuring compatibility with existing pipelines. It includes preprocessing capabilities such as data import, quality control, gene count normalisation, and variable gene selection, alongside tools for downstream analysis and detailed visualisations that quantify and map spatial heterogeneity and relationships. We demonstrate the utility of STExplorer through applications to spatial transcriptomics datasets, revealing that spatially varying gene expression and relationships are often masked by standard analyses. By bridging bioinformatics and CG, STExplorer provides a novel and informed approach to spatial transcriptomics analysis, with robust tools to address spatial heterogeneity and its associated underlying biology, thereby advancing our understanding of complex tissue biology without reinventing the wheel.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Page margins changed so bioRxiv header does not overlap text; no alterations to content.* https://github.com/LefterisZ/STExplorer* https://github.com/ncl-icbam/STExplorer_Analysis 
653 |a Data processing 
653 |a Gene expression 
653 |a Transcriptomics 
653 |a Quality control 
653 |a Principal components analysis 
653 |a Bioinformatics 
653 |a Geography 
653 |a Spatial heterogeneity 
700 1 |a Vlachogiannis, Nikolaos I 
700 1 |a Resteu, Anastasia 
700 1 |a Unsworth, Adrienne 
700 1 |a Simon Tual-Chalot 
700 1 |a Dorgau, Birthe 
700 1 |a Queen, Rachel 
700 1 |a Lako, Majlinda 
700 1 |a Tiniakos, Dina 
700 1 |a Comber, Alexis 
700 1 |a Anstee, Quentin M 
700 1 |a Giakountis, Antonis 
700 1 |a Cockell, Simon J 
773 0 |t bioRxiv  |g (Jan 23, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3158241612/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3158241612/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.17.633539v2