A comprehensive comparison on clustering methods for multi-slide spatially resolved transcriptomics data analysis

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:bioRxiv (Jan 22, 2025)
1. Verfasser: Xiong, Caiwei
Weitere Verfasser: Huang, Shuai, Zhou, Muqing, Zhang, Yiyan, Wu, Wenrong, Li, Xihao, Yao, Huaxiu, Chen, Jiawen, Li, Yun
Veröffentlicht:
Cold Spring Harbor Laboratory Press
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3158241713
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.19.633631  |2 doi 
035 |a 3158241713 
045 0 |b d20250122 
100 1 |a Xiong, Caiwei 
245 1 |a A comprehensive comparison on clustering methods for multi-slide spatially resolved transcriptomics data analysis 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 22, 2025 
513 |a Working Paper 
520 3 |a Spatial transcriptomics (ST) data, by providing spatial information, enables simultaneous analysis of gene expression distributions and their spatial patterns within tissue. Clustering or spatial domain detection represents an essential methodology for ST data, facilitating the exploration of spatial organizations with shared gene expression or histological characteristics. Traditionally, clustering algorithms for ST have focused on individual tissue sections. However, the emergence of numerous contiguous tissue sections derived from the same or similar tissue specimens within or across individuals has led to the development of multi-slide clustering methods. In this study, we assess seven single-slide and three multi-slide clustering methods on two simulated datasets and three real datasets. Additionally, we investigate the effectiveness of pre-processing techniques, including spatial coordinate alignment (for example, PASTE) and gene expression batch effect removal (for example, Harmony), on clustering performance. Our study provides a comprehensive comparison of clustering methods for multi-slide ST data, serving as a practical guide for method selection in various scenarios.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Data processing 
653 |a Gene expression 
653 |a Transcriptomics 
653 |a Information processing 
653 |a Clustering 
700 1 |a Huang, Shuai 
700 1 |a Zhou, Muqing 
700 1 |a Zhang, Yiyan 
700 1 |a Wu, Wenrong 
700 1 |a Li, Xihao 
700 1 |a Yao, Huaxiu 
700 1 |a Chen, Jiawen 
700 1 |a Li, Yun 
773 0 |t bioRxiv  |g (Jan 22, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3158241713/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.19.633631v1