Gradient metamaterials with tunable compression-twist coupling deformation

Сохранить в:
Библиографические подробности
Опубликовано в::Acta Mechanica vol. 236, no. 1 (Jan 2025), p. 357
Опубликовано:
Springer Nature B.V.
Предметы:
Online-ссылка:Citation/Abstract
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3158290041
003 UK-CbPIL
022 |a 0001-5970 
022 |a 1619-6937 
024 7 |a 10.1007/s00707-024-04159-8  |2 doi 
035 |a 3158290041 
045 2 |b d20250101  |b d20250131 
084 |a 65712  |2 nlm 
245 1 |a Gradient metamaterials with tunable compression-twist coupling deformation 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Compression-twist metamaterials exhibit unique properties of compression-induced twisting, presenting new possibilities for the development of smart materials. However, achieving multifunctionality solely through conventional configuration design and parametric studies of individual cells is relatively constrained. Gradient metamaterials, which are characterized by continuous spatial variation in physical and mechanical properties through the gradient design of geometric parameters, offer a promising approach for development multifunctional and smart materials. In this study, a novel 3D gradient compression-twist metamaterial (GCTMM) is proposed, with its mechanical properties and deformation mechanisms under in-plane compression investigated by theoretical analysis, experiment, and numerical simulations. The experimental and simulation results demonstrate a nonlinear relationship between the twist angle and compressive displacement. The height and number of cell layers influence the overall stiffness of the GCTMM and affect the deformation coordination between layers. The structure’s compression-twist coupling properties are significantly reduced due to the plastic yield of the inclined rods. Analytical models were developed to describe the twist angle and initial yield displacement, accurately predicting the nonlinear variation in compression-twist coupling behavior and the degradation of the mechanical performance. To enhance structural reliability, an improved GCTMM with protective support columns was designed and analyzed through numerical simulations. The results indicate that the maximum stress within the structure remains below the material’s yield strength, ensuring its reliability and durability. These findings offer valuable insights for the design of gradient buffer materials, the development of mechanical signal enhancement or conversion devices, and the creation of multistage signal transmission sensors. 
653 |a Signal transmission 
653 |a Mechanical properties 
653 |a Smart materials 
653 |a Configuration management 
653 |a Mathematical analysis 
653 |a Metamaterials 
653 |a Deformation mechanisms 
653 |a Numerical models 
653 |a Deformation analysis 
653 |a Physical properties 
653 |a Structural reliability 
653 |a Deformation 
653 |a Protective structures 
653 |a Compressive strength 
653 |a Coupling 
653 |a Smart devices 
653 |a Simulation 
773 0 |t Acta Mechanica  |g vol. 236, no. 1 (Jan 2025), p. 357 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3158290041/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3158290041/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch