An extreme forecast index-driven runoff prediction approach using stacking ensemble learning

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Geomatics, Natural Hazards & Risk vol. 15, no. 1 (Dec 2024)
मुख्य लेखक: Leng, Zhiyuan
अन्य लेखक: Chen, Lu, Yang, Binlin, Li, Siming, Yi, Bin
प्रकाशित:
Taylor & Francis Ltd.
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3158425450
003 UK-CbPIL
022 |a 1947-5705 
022 |a 1947-5713 
024 7 |a 10.1080/19475705.2024.2353144  |2 doi 
035 |a 3158425450 
045 2 |b d20241201  |b d20241231 
084 |a 143350  |2 nlm 
100 1 |a Leng, Zhiyuan  |u School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan, China 
245 1 |a An extreme forecast index-driven runoff prediction approach using stacking ensemble learning 
260 |b Taylor & Francis Ltd.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Runoff prediction plays a crucial role in hydropower generation and flood prevention, enhancing prediction accuracy in hydrology. This study proposes an extreme forecast index (EFI)-driven runoff prediction approach using stacking ensemble learning to improve prediction performance. EFI is introduced as an input into four machine learning models (Support Vector Regression, Multi-layer Perceptron, Gradient Boosting Decision Tree, and Ridge Regression) for runoff prediction with lead times of 24 h, 48 h, and 72 h. The stacking ensemble learning framework comprises four base-models and a meta-model, and model hyperparameters are re-optimized using the particle swarm optimization algorithm. The approach focuses on predicting the inflow processes of the Geheyan Reservoir in the Qing River using EFI and runoff time series. Results demonstrate that the EFI-runoff simulation can improve runoff prediction capability due to EFI’s higher sensitivity to observed runoff, and the proposed stacking ensemble learning model outperforms the individual model in predicting runoff with all lead times. The relative flood peak error, mean relative error, root mean square error, and Nash-Sutcliffe efficiency coefficient of the model’s one-day-ahead prediction are 7.987%, 22.421%, 632.871 m3/s, and 0.771, respectively. Therefore, this approach can be effectively utilized to improve accuracy in short-term runoff prediction applications. 
653 |a Flood peak 
653 |a Flood forecasting 
653 |a Particle swarm optimization 
653 |a Hydrology 
653 |a Observational learning 
653 |a Multilayers 
653 |a Runoff 
653 |a Regression analysis 
653 |a Multilayer perceptrons 
653 |a Flood control 
653 |a Machine learning 
653 |a Hydroelectric power 
653 |a Decision trees 
653 |a Inflow 
653 |a Accuracy 
653 |a Support vector machines 
653 |a Predictions 
653 |a Base stacking 
653 |a Hydroelectric power generation 
653 |a Algorithms 
653 |a Flood prevention 
653 |a Floods 
653 |a Ensemble learning 
653 |a Water inflow 
653 |a Flood predictions 
653 |a Environmental 
700 1 |a Chen, Lu  |u School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan, China 
700 1 |a Yang, Binlin  |u School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan, China 
700 1 |a Li, Siming  |u School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan, China 
700 1 |a Yi, Bin  |u School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan, China 
773 0 |t Geomatics, Natural Hazards & Risk  |g vol. 15, no. 1 (Dec 2024) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3158425450/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3158425450/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch