The PSO-IFAH optimization algorithm for transient electromagnetic inversion

Guardat en:
Dades bibliogràfiques
Publicat a:PLoS One vol. 20, no. 1 (Jan 2025), p. e0317596
Autor principal: Xu, Zhengyu
Altres autors: Zhao, Guofeng, Liao, Xian, Fu, Nengyi
Publicat:
Public Library of Science
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3158449147
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0317596  |2 doi 
035 |a 3158449147 
045 2 |b d20250101  |b d20250131 
084 |a 174835  |2 nlm 
100 1 |a Xu, Zhengyu 
245 1 |a The PSO-IFAH optimization algorithm for transient electromagnetic inversion 
260 |b Public Library of Science  |c Jan 2025 
513 |a Journal Article 
520 3 |a As a non-contact method, the transient electromagnetic (TEM) method has the characteristics of high efficiency, small impact of device, no limitation of site range, and high resolution, and is a hot topic in current research. However, the research on the refined data processing method of TEM is lag, which seriously restricts the application in superficial engineering investigation and is a key problem that needs to be solved urgently. The particle swarm optimization (PSO) algorithm and firefly algorithm (FA) were successful swarm intelligence algorithms inspired by nature. However, the accuracy and efficiency of the algorithm restrict its further development. In this paper, the particle moving velocity of FA algorithm is defined according to the concept of particle moving velocity in PSO algorithm, so as to improve the local fast convergence ability of FA algorithm. On this basis, the appropriate velocity of particle movement is improved, so that the improved algorithm can overcome the oscillation problem around the optimal solution and improve the computational efficiency. And finally, an improved PSO-IFA hybrid optimization algorithm (PSO-IFAH) was proposed in the paper. The proposed algorithm can exploit the strong points of both PSO and FA algorithm mechanisms. A typical layered model was established, and the PSO algorithm, FA algorithm, and PSO-IFAH algorithm were applied to inversion calculations. The results show that the PSO-IFAH algorithm improves calculation accuracy by more than 80% and efficiency by over 60% compared to the PSO and FA algorithms, respectively. The PSO-IFAH algorithm also exhibits high inversion accuracy and stability, with superior anti-noise properties compared to the other algorithms. When implemented in ground TEM measurement data processing, the PSO-IFAH algorithm enhances the resolution of anomalies and low-resistance details, aligning well with actual excavation results. This highlights the algorithm’s capability to depict underground electrical structures and karst developments accurately, thereby improving the precision of TEM data processing and interpretation. 
653 |a Particle swarm optimization 
653 |a Accuracy 
653 |a Swarm intelligence 
653 |a Data processing 
653 |a Karst 
653 |a Food 
653 |a Underground structures 
653 |a Algorithms 
653 |a Iterative methods 
653 |a Efficiency 
653 |a Excavation 
653 |a Electric contacts 
653 |a Transmitters 
653 |a Heuristic methods 
653 |a Noise measurement 
653 |a Velocity 
653 |a Methods 
653 |a Movement 
653 |a Optimization algorithms 
653 |a Environmental 
700 1 |a Zhao, Guofeng 
700 1 |a Liao, Xian 
700 1 |a Fu, Nengyi 
773 0 |t PLoS One  |g vol. 20, no. 1 (Jan 2025), p. e0317596 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3158449147/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3158449147/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3158449147/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch