Simulation of interferometric imaging with EISCAT_3D for fine-scale in-beam incoherent scatter spectra measurements

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Annales Geophysicae vol. 43, no. 1 (2025), p. 99
Hoofdauteur: Huyghebaert, Devin
Andere auteurs: Gustavsson, Björn, Vierinen, Juha, Kvammen, Andreas, Zettergren, Matthew, Swoboda, John, Virtanen, Ilkka, Hatch, Spencer M, Laundal, Karl M
Gepubliceerd in:
Copernicus GmbH
Onderwerpen:
Online toegang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3158997158
003 UK-CbPIL
022 |a 0992-7689 
022 |a 1432-0576 
024 7 |a 10.5194/angeo-43-99-2025  |2 doi 
035 |a 3158997158 
045 2 |b d20250101  |b d20251231 
084 |a 123612  |2 nlm 
100 1 |a Huyghebaert, Devin  |u Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway; Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Canada 
245 1 |a Simulation of interferometric imaging with EISCAT_3D for fine-scale in-beam incoherent scatter spectra measurements 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a The 233 MHz EISCAT_3D radar system currently under construction in northern Fennoscandia will be able to resolve ionospheric structures smaller than the transmit beam dimensions through the use of interferometric imaging. This capability is made possible by the modular design and digitization of the 119 panels with 91 antennas each located at the main Skibotn site. The main array consists of a cluster of 109 panels, with 10 outlier panels producing unique interferometry baselines. In the present study, synthesized incoherent scatter radar signal measurements are used for interferometric imaging analysis with the EISCAT_3D system. The Geospace Environment Model of Ion-Neutral Interactions (GEMINI) model is used to simulate a Kelvin–Helmholtz instability in the cusp region at 50 m resolution to obtain plasma parameters which are then used to generate the synthetic data. The ionospheric data are forward-propagated to the EISCAT_3D array, noise is added to the synthetic data, and an inversion of the data is performed to reconstruct the incoherent scatter spectra at relatively fine scales. Using singular value decomposition (SVD) with Tikhonov regularization, it is possible to pre-calculate the inversion matrix for a given range and look direction, with the regularization value scaled based on the signal-to-noise standard deviation ratio (SNSDR). The pre-calculation of the inversion matrix can reduce computational overhead in the imaging solution. This study provides a framework for data processing of ion-line incoherent scatter radar spectra to be imaged at fine scales. Furthermore, with more development, it can be used to test experimental setups and to design experiments for EISCAT_3D by investigating the needed integration time for various SNSDRs, beam patterns, and ionospheric conditions. 
651 4 |a Norway 
653 |a Receivers & amplifiers 
653 |a Outliers (statistics) 
653 |a Signal processing 
653 |a Kelvin-Helmholtz instability 
653 |a Interferometry 
653 |a Noise standards 
653 |a Data analysis 
653 |a Regularization 
653 |a Fourier transforms 
653 |a Modular design 
653 |a Environment models 
653 |a Antenna arrays 
653 |a Plasma 
653 |a Scatter propagation 
653 |a Data processing 
653 |a Spectra 
653 |a Noise reduction 
653 |a Chemical synthesis 
653 |a Antennas 
653 |a Incoherent scatter radar 
653 |a Ionosphere 
653 |a Radar imaging 
653 |a Radar 
653 |a Singular value decomposition 
653 |a Signal to noise ratio 
653 |a Scattering 
653 |a Ionospheric conditions 
653 |a Modular systems 
653 |a Noise propagation 
653 |a Panels 
653 |a Radar equipment 
653 |a Modular structures 
653 |a Radar systems 
653 |a Line spectra 
653 |a Synthetic data 
653 |a Environmental 
700 1 |a Gustavsson, Björn  |u Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway 
700 1 |a Vierinen, Juha  |u Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway 
700 1 |a Kvammen, Andreas  |u Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway 
700 1 |a Zettergren, Matthew  |u Embry–Riddle Aeronautical University, Daytona Beach, FL, USA 
700 1 |a Swoboda, John  |u MIT Haystack Observatory, Westford, MA, USA 
700 1 |a Virtanen, Ilkka  |u Space Physics and Astronomy Research Unit, University of Oulu, Oulu, Finland 
700 1 |a Hatch, Spencer M  |u Department of Physics and Technology, University of Bergen, Bergen, Norway 
700 1 |a Laundal, Karl M  |u Department of Physics and Technology, University of Bergen, Bergen, Norway 
773 0 |t Annales Geophysicae  |g vol. 43, no. 1 (2025), p. 99 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3158997158/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3158997158/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3158997158/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch