Convolutional neural networks for sea surface data assimilation in operational ocean models: test case in the Gulf of Mexico

Guardado en:
Detalles Bibliográficos
Publicado en:Ocean Science vol. 21, no. 1 (2025), p. 113
Autor principal: Zavala-Romero, Olmo
Otros Autores: Bozec, Alexandra, Chassignet, Eric P, Miranda, Jose R
Publicado:
Copernicus GmbH
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159017478
003 UK-CbPIL
022 |a 1812-0784 
022 |a 1812-0792 
024 7 |a 10.5194/os-21-113-2025  |2 doi 
035 |a 3159017478 
045 2 |b d20250101  |b d20250228 
084 |a 123635  |2 nlm 
100 1 |a Zavala-Romero, Olmo  |u Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA; Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA 
245 1 |a Convolutional neural networks for sea surface data assimilation in operational ocean models: test case in the Gulf of Mexico 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Deep learning models have demonstrated remarkable success in fields such as language processing and computer vision, routinely employed for tasks like language translation, image classification, and anomaly detection. Recent advancements in ocean sciences, particularly in data assimilation (DA), suggest that machine learning can emulate dynamical models, replace traditional DA steps to expedite processes, or serve as hybrid surrogate models to enhance forecasts. However, these studies often rely on ocean models of intermediate complexity, which involve significant simplifications that present challenges when transitioning to full-scale operational ocean models. This work explores the application of convolutional neural networks (CNNs) in data assimilation within the context of the HYbrid Coordinate Ocean Model (HYCOM) in the Gulf of Mexico. The CNNs are trained to correct model errors from a 2-year, high-resolution (<inline-formula>1/25°</inline-formula>) HYCOM dataset, assimilated using the Tendral Statistical Interpolation System (T-SIS). The CNNs are trained to replicate the increments generated by the T-SIS data assimilation package, aiming to correct model forecasts of sea surface temperature (SST) and sea surface height (SSH). The inputs to the CNNs include real satellite observations of SST from the Group for High Resolution Sea Surface Temperature (GHRSST), along-track altimeter SSH observations (ADT), the model background state (previous forecast), and the innovations (differences between observations and background). We assess the performance of the CNNs across five controlled experiments, designed to provide insights into their application in environments governed by full primitive equations, real observations, and complex topographies. The experiments focus on evaluating (1)&#xa0;the architecture and complexity of the CNNs, (2)&#xa0;the type and quantity of observations, (3)&#xa0;the type and number of assimilated fields, (4)&#xa0;the impact of training window size, and (5)&#xa0;the influence of coastal boundaries. Our findings reveal significant correlations between the chosen training window size – a factor not commonly examined – and the CNNs' ability to assimilate observations effectively. We also establish a clear link between the CNNs' architecture and complexity and their overall performance.This research uses artificial intelligence to enhance ocean forecasting in the Gulf of Mexico. By using convolutional neural networks, the study improves predictions of sea temperatures and heights by integrating real satellite data with existing models. Through five comprehensive experiments, the team found that the amount of training data and the design of the neural networks significantly affect accuracy. These insights pave the way for faster, more reliable ocean models, benefiting environmental monitoring and maritime operations. 
651 4 |a Gulf of Mexico 
653 |a Satellite data 
653 |a Environmental monitoring 
653 |a Ocean models 
653 |a Sea surface temperature 
653 |a Surface temperature 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Computer vision 
653 |a Data assimilation 
653 |a Machine learning 
653 |a Training 
653 |a Interpolation 
653 |a Altimeters 
653 |a Satellite observation 
653 |a Primitive equations 
653 |a High resolution 
653 |a Image classification 
653 |a Artificial intelligence 
653 |a Information processing 
653 |a Performance assessment 
653 |a Anomalies 
653 |a Random variables 
653 |a Models 
653 |a Task complexity 
653 |a Satellites 
653 |a Dynamic models 
653 |a Language translation 
653 |a Deep learning 
653 |a Oceans 
653 |a Data collection 
653 |a Natural language processing 
653 |a Satellite tracking 
653 |a Environmental 
700 1 |a Bozec, Alexandra  |u Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA 
700 1 |a Chassignet, Eric P  |u Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA 
700 1 |a Miranda, Jose R  |u Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA; Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA 
773 0 |t Ocean Science  |g vol. 21, no. 1 (2025), p. 113 
786 0 |d ProQuest  |t Continental Europe Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159017478/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3159017478/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159017478/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch