Numerical investigation on hydrothermal characteristics of microchannel heat sinks with PCM inserts for effective thermal management applications

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Numerical Methods for Heat & Fluid Flow vol. 35, no. 1 (2025), p. 140-167
1. Verfasser: Naga, Ramesh Korasikha
Weitere Verfasser: Karthikeya Sharma T, Amba Prasad Rao G
Veröffentlicht:
Emerald Group Publishing Limited
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3159058625
003 UK-CbPIL
022 |a 0961-5539 
022 |a 1758-6585 
024 7 |a 10.1108/HFF-03-2024-0196  |2 doi 
035 |a 3159058625 
045 2 |b d20250101  |b d20250131 
084 |a 46138  |2 nlm 
100 1 |a Naga, Ramesh Korasikha  |u Department of Mechanical Engineering, NIT Andhra Pradesh, Tadepalligudem, India 
245 1 |a Numerical investigation on hydrothermal characteristics of microchannel heat sinks with PCM inserts for effective thermal management applications 
260 |b Emerald Group Publishing Limited  |c 2025 
513 |a Journal Article 
520 3 |a PurposeThe purpose of the paper is to develop an efficient thermal management system, which effectively dissipate the heat generated from the electronic devices. The present paper focuses at the modeling of microchannel heat sinks (MCHSs) with phase change materials (PCMs) insets to deal with the fluctuating heat generated from the electronic components.Design/methodology/approachIn this paper, a novel approach is introduced to enhance the thermal performance of MCHSs through the integration of conjugate heat transfer and energy storage. Numerical investigations were conducted on six novel models of PCM-based hybrid MCHSs using ANSYS-FLUENT. The hydrothermal characteristics of six PCM-based hybrid MCHS models were analyzed and compared with an MCHS model without PCM.FindingsThe numerical model used for this study exhibited a good agreement with existing experimental and simulation results documented in the literature. The hybrid MCHS models developed in the present analysis showed superior thermal characteristics compared to MCHS without PCM. About 12% improvement in the thermal performance factor and a 7.3% reduction in thermal resistance were observed in the proposed MCHS models. A negligible influence of the PCM channel shape and aspect ratio (AR) was observed on the MCHS performance.Research limitations/implicationsAs the present work is a numerical investigation, the computational time and computational cost requirements are the main implication for the research.Practical implicationsHigh pumping power requirement and expensive manufacturing methods of the microfluidic devices are the main practical implications. Leakage problem is also a challenge for development of these heat sinks.Originality/valueThe surge in the heat generated by electronic components is a limiting factor for the conventional MCHSs. To accommodate the surge, researchers have explored energy storage methods using PCM-based passive MCHS but these are effective only during the phase change process. To address this limitation, novel PCM-based hybrid MCHSs, which combine convective heat transfer with energy storage capabilities, have been modeled in the present work. There is an ample opportunity for further exploration of hybrid MCHSs with PCM. 
653 |a Inserts 
653 |a Resistance factors 
653 |a Nanoparticles 
653 |a Ratios 
653 |a Optimization techniques 
653 |a Aspect ratio 
653 |a Thermal resistance 
653 |a Numerical analysis 
653 |a Limiting factors 
653 |a Phase change materials 
653 |a Microfluidic devices 
653 |a Research & development--R&D 
653 |a Heat sinks 
653 |a Microchannels 
653 |a Friction 
653 |a Heat transfer 
653 |a Viscosity 
653 |a Numerical models 
653 |a Mathematical models 
653 |a Energy storage 
653 |a Sinkholes 
653 |a Convection 
653 |a Convective heat transfer 
653 |a Computational efficiency 
653 |a Electronic components 
653 |a Components 
653 |a Energy 
653 |a Computing costs 
653 |a Thermal management 
653 |a Thermal simulation 
653 |a Reynolds number 
653 |a Computer aided engineering--CAE 
653 |a Production methods 
653 |a Computing time 
653 |a Environmental 
700 1 |a Karthikeya Sharma T  |u Department of Mechanical Engineering, NIT Andhra Pradesh, Tadepalligudem, India 
700 1 |a Amba Prasad Rao G  |u Department of Mechanical Engineering, NIT Warangal, Warangal, India 
773 0 |t International Journal of Numerical Methods for Heat & Fluid Flow  |g vol. 35, no. 1 (2025), p. 140-167 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159058625/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3159058625/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159058625/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch