A New Generalized Chebyshev Matrix Algorithm for Solving Second-Order and Telegraph Partial Differential Equations

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 1 (2025), p. 2
Autor principal: Waleed Mohamed Abd-Elhameed
Otros Autores: Hafez, Ramy M, Napoli, Anna, Ahmed Gamal Atta
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This article proposes numerical algorithms for solving second-order and telegraph linear partial differential equations using a matrix approach that employs certain generalized Chebyshev polynomials as basis functions. This approach uses the operational matrix of derivatives of the generalized Chebyshev polynomials and applies the collocation method to convert the equations with their underlying conditions into algebraic systems of equations that can be numerically treated. The convergence and error bounds are examined deeply. Some numerical examples are shown to demonstrate the efficiency and applicability of the proposed algorithms.
ISSN:1999-4893
DOI:10.3390/a18010002
Fuente:Engineering Database