Measuring the Inferential Values of Relations in Knowledge Graphs

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 1 (2025), p. 6
Autor principal: Zhang, Xu
Otros Autores: Kang, Xiaojun, Yao, Hong, Dong, Lijun
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159222464
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18010006  |2 doi 
035 |a 3159222464 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Zhang, Xu  |u School of Computer Science, China University of Geosciences, Wuhan 430078, China; <email>xuzhang@cug.edu.cn</email> (X.Z.); <email>kangxj@cug.edu.cn</email> (X.K.); <email>yaohong@cug.edu.cn</email> (H.Y.) 
245 1 |a Measuring the Inferential Values of Relations in Knowledge Graphs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Knowledge graphs, as an important research direction in artificial intelligence, have been widely applied in many fields and tasks. The relations in knowledge graphs have explicit semantics and play a crucial role in knowledge completion and reasoning. Correctly measuring the inferential value of relations and identifying important relations in a knowledge graph can effectively improve the effectiveness of knowledge graphs in reasoning tasks. However, the existing methods primarily consider the connectivity and structural characteristics of relations, but neglect the semantics and the mutual influence of relations in reasoning tasks. This leads to truly valuable relations being difficult to fully utilize in long-chain reasoning. To address this problem, this work, inspired by information entropy and uncertainty-measurement methods in knowledge bases, proposes a method called Relation Importance Measurement based on Information Entropy (RIMIE) to measure the inferential value of relations in knowledge graphs. RIMIE considers the semantics of relations and the role of relations in reasoning. Specifically, based on the values of relations in logical chains, RIMIE partitions the logical sample set into multiple equivalence classes, and generates a knowledge structure for each relation. Correspondingly, to effectively measure the inferential values of relations in knowledge graphs, the concept of relation entropy is proposed, and it is calculated according to the knowledge structures. Finally, to objectively assess the effectiveness of RIMIE, a group of experiments are conducted, which compare the influences of the relations selected according to RIMIE and other patterns on the triple classifications by knowledge graph representation learning. The experimental results confirm what is claimed above. 
653 |a Measurement methods 
653 |a Semantics 
653 |a Graphs 
653 |a Knowledge bases (artificial intelligence) 
653 |a Graph theory 
653 |a Reasoning 
653 |a Effectiveness 
653 |a Entropy (Information theory) 
653 |a Methods 
653 |a Algorithms 
653 |a Artificial intelligence 
653 |a Machine learning 
653 |a Graphical representations 
653 |a Influence 
653 |a Knowledge representation 
653 |a Entropy 
653 |a Cognition & reasoning 
700 1 |a Kang, Xiaojun  |u School of Computer Science, China University of Geosciences, Wuhan 430078, China; <email>xuzhang@cug.edu.cn</email> (X.Z.); <email>kangxj@cug.edu.cn</email> (X.K.); <email>yaohong@cug.edu.cn</email> (H.Y.); Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China 
700 1 |a Yao, Hong  |u School of Computer Science, China University of Geosciences, Wuhan 430078, China; <email>xuzhang@cug.edu.cn</email> (X.Z.); <email>kangxj@cug.edu.cn</email> (X.K.); <email>yaohong@cug.edu.cn</email> (H.Y.); Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China 
700 1 |a Dong, Lijun  |u School of Computer Science, China University of Geosciences, Wuhan 430078, China; <email>xuzhang@cug.edu.cn</email> (X.Z.); <email>kangxj@cug.edu.cn</email> (X.K.); <email>yaohong@cug.edu.cn</email> (H.Y.); Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China 
773 0 |t Algorithms  |g vol. 18, no. 1 (2025), p. 6 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159222464/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159222464/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159222464/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch