The Small Mobile Ozone Lidar (SMOL): instrument description and first results

Guardat en:
Dades bibliogràfiques
Publicat a:Atmospheric Measurement Techniques vol. 18, no. 2 (2025), p. 405
Autor principal: Chouza, Fernando
Altres autors: Leblanc, Thierry, Wang, Patrick, Brown, Steven S, Zuraski, Kristen, Chace, Wyndom, Womack, Caroline C, Peischl, Jeff, Hair, John, Taylor Shingler, Sullivan, John
Publicat:
Copernicus GmbH
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3159315929
003 UK-CbPIL
022 |a 1867-1381 
022 |a 1867-8548 
024 7 |a 10.5194/amt-18-405-2025  |2 doi 
035 |a 3159315929 
045 2 |b d20250101  |b d20251231 
084 |a 123616  |2 nlm 
100 1 |a Chouza, Fernando  |u Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, CA, USA 
245 1 |a The Small Mobile Ozone Lidar (SMOL): instrument description and first results 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Ozone profile measurements at high temporal and vertical resolution are needed to better understand physical and chemical processes driving tropospheric ozone variability and to validate the tropospheric ozone measurements from spaceborne missions such as TEMPO (Tropospheric Emissions: Monitoring Pollution). As part of the Tropospheric Ozone Lidar Network (TOLNet) efforts allocated to provide such measurements and leveraging on the experience of more than 20 years of ozone lidar measurements at Table Mountain Facility, the JPL lidar group developed the SMOL (Small Mobile Ozone Lidar), an affordable differential absorption lidar (DIAL) system covering all altitudes from 200 to 10 km above ground level (a.g.l.). The transmitter is based on a quadrupled Nd:YAG laser, which is further converted into a 289/299 nm wavelength pair using Raman shifting cells, and the receiver consists of three ozone DIAL pairs, including one that is 266/289 nm and two that are 289/299 nm. Two units were deployed in the Los Angeles basin area during the Synergistic TEMPO Air Quality Science (STAQS) and Atmospheric Emissions and Reactions Observed from Megacities to Marine Areas (AEROMMA) campaigns in summer 2023. The comparison with airborne in situ and lidar measurements shows very good agreement, with systematic differences below 10 % throughout most of the measurement range. An additional comparison with nearby surface ozone measuring instruments indicates unbiased measurements by the SMOL lidars down to 200 m a.g.l. Further comparison with the Goddard Earth Observing System Composition Forecast (GEOS-CF) model suggests that such lidars are a critical tool to perform model validation and can potentially be used for assimilation to air quality forecasts. 
651 4 |a United States--US 
651 4 |a Table Mountain 
653 |a Measuring instruments 
653 |a Air quality 
653 |a Thermal cycling 
653 |a Ozone 
653 |a Chemical reactions 
653 |a Lidar 
653 |a Neodymium lasers 
653 |a Wavelength 
653 |a Air quality forecasting 
653 |a Pollution monitoring 
653 |a Measurement techniques 
653 |a Transmitters 
653 |a Outdoor air quality 
653 |a Ozone measurements 
653 |a Semiconductor lasers 
653 |a Differential absorption lidar 
653 |a Tropospheric ozone 
653 |a Efficiency 
653 |a Emission measurements 
653 |a Emissions 
653 |a Air conditioning 
653 |a Marine environment 
653 |a Lasers 
653 |a Air quality measurements 
653 |a YAG lasers 
653 |a Troposphere 
653 |a Lidar measurements 
653 |a Megacities 
653 |a Environmental 
700 1 |a Leblanc, Thierry  |u Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, CA, USA 
700 1 |a Wang, Patrick  |u Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, CA, USA 
700 1 |a Brown, Steven S  |u NOAA Chemical Sciences Laboratory, Boulder, CO, USA 
700 1 |a Zuraski, Kristen  |u NOAA Chemical Sciences Laboratory, Boulder, CO, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA 
700 1 |a Chace, Wyndom  |u NOAA Chemical Sciences Laboratory, Boulder, CO, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA; Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA 
700 1 |a Womack, Caroline C  |u NOAA Chemical Sciences Laboratory, Boulder, CO, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA 
700 1 |a Peischl, Jeff  |u NOAA Chemical Sciences Laboratory, Boulder, CO, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA 
700 1 |a Hair, John  |u NASA Langley Research Center, Hampton, VA, USA 
700 1 |a Taylor Shingler  |u NASA Langley Research Center, Hampton, VA, USA 
700 1 |a Sullivan, John  |u NASA Goddard Space Flight Center, Greenbelt, MD, USA 
773 0 |t Atmospheric Measurement Techniques  |g vol. 18, no. 2 (2025), p. 405 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159315929/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3159315929/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159315929/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch