A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value Problems
Gorde:
| Argitaratua izan da: | Axioms vol. 14, no. 1 (2025), p. 73 |
|---|---|
| Egile nagusia: | |
| Beste egile batzuk: | , , |
| Argitaratua: |
MDPI AG
|
| Gaiak: | |
| Sarrera elektronikoa: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiketak: |
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
| Laburpena: | This work aims to provide approximate solutions for singularly perturbed problems with periodic boundary conditions using quintic B-splines and collocation. The well-known Shishkin mesh strategy is applied for mesh construction. Convergence analysis demonstrates that the method achieves parameter-uniform convergence with fourth-order accuracy in the maximum norm. Numerical examples are presented to validate the theoretical estimates. Additionally, the standard hybrid finite difference scheme, a cubic spline scheme, and the proposed method are compared to demonstrate the effectiveness of the present approach. |
|---|---|
| ISSN: | 2075-1680 |
| DOI: | 10.3390/axioms14010073 |
| Baliabidea: | Engineering Database |