A Reduced-Order Model of Lithium–Sulfur Battery Discharge

Guardado en:
Detalles Bibliográficos
Publicado en:Batteries vol. 11, no. 1 (2025), p. 15
Autor principal: Haddad, Noushin
Otros Autores: Fathy, Hosam K
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159404353
003 UK-CbPIL
022 |a 2313-0105 
024 7 |a 10.3390/batteries11010015  |2 doi 
035 |a 3159404353 
045 2 |b d20250101  |b d20251231 
100 1 |a Haddad, Noushin 
245 1 |a A Reduced-Order Model of Lithium–Sulfur Battery Discharge 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper examines the problem of modeling lithium–sulfur (Li-S) battery discharge dynamics. The importance of this problem stems from the attractive specific energy levels achievable by Li-S batteries, which can be particularly appealing for applications such as aviation electrification. Previous research presents different Li-S battery models, including “zero-dimensional” models that neglect diffusion while using the laws of electrochemistry to represent reduction–oxidation (redox) rates. Zero-dimensional models typically succeed in capturing key features of Li-S battery discharge, including the high plateau, low plateau, and dip point visible in the discharge curves of certain Li-S battery chemistries. However, these models’ use of one state variable to represent the mass of each active species tends to furnish high-order models, with many state variables. This increases the computational complexity of model-based estimation and optimal control. The main contribution of this paper is to develop low-order state-space model of Li-S battery discharge. Specifically, the paper starts with a seventh-order zero-dimensional model of Li-S discharge dynamics, analyzes its discharge behavior, constructs phenomenological second- and third-order models capable of replicating this behavior, and parameterizes these models. The proposed models succeed in capturing battery discharge behavior accurately over a wide range of discharge rates. To the best of our knowledge, these are two of the simplest published models capable of doing so. 
653 |a Discharge 
653 |a Simulation 
653 |a Accuracy 
653 |a Electrolytes 
653 |a Physics 
653 |a Reduced order models 
653 |a Specific energy 
653 |a Electrodes 
653 |a Oxidation 
653 |a State space models 
653 |a State variable 
653 |a Variables 
653 |a Sulfur 
653 |a Diffusion rate 
653 |a Batteries 
653 |a Electrochemistry 
653 |a Optimal control 
653 |a Dimensional analysis 
653 |a Lithium sulfur batteries 
653 |a Lithium 
653 |a Composite materials 
653 |a Energy levels 
700 1 |a Fathy, Hosam K 
773 0 |t Batteries  |g vol. 11, no. 1 (2025), p. 15 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159404353/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159404353/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159404353/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch