Application of Google Earth Engine to Monitor Greenhouse Gases: A Review

Guardat en:
Dades bibliogràfiques
Publicat a:Data vol. 10, no. 1 (2025), p. 8
Autor principal: Wilson, Damar David
Altres autors: Gebrekidan Worku Tefera, Ray, Ram L
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3159407869
003 UK-CbPIL
022 |a 2306-5729 
024 7 |a 10.3390/data10010008  |2 doi 
035 |a 3159407869 
045 2 |b d20250101  |b d20251231 
100 1 |a Wilson, Damar David 
245 1 |a Application of Google Earth Engine to Monitor Greenhouse Gases: A Review 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Google Earth Engine (GEE) is a cloud-based platform revolutionizing geospatial analysis by providing access to vast satellite datasets and computational capabilities for monitoring environmental and societal issues. It incorporates machine learning (ML) techniques and algorithms as part of its tools for analyzing and processing large geospatial data. This review explores the diverse applications of GEE in monitoring and mitigating greenhouse gas emissions and uptakes. GEE is a cloud-based platform built on Google’s infrastructure for analyzing and visualizing large-scale geospatial datasets. It offers large datasets for monitoring greenhouse gas (GHG) emissions and understanding their environmental impact. By leveraging GEE’s capabilities, researchers have developed tools and algorithms to analyze remotely sensed data and accurately quantify GHG emissions and uptakes. This review examines progress and trends in GEE applications, focusing on monitoring carbon dioxide (CO2), methane (CH4), and nitrous oxide/nitrogen dioxide (N2O/NO2) emissions. It discusses the integration of GEE with different machine learning methods and the challenges and opportunities in optimizing algorithms and ensuring data interoperability. Furthermore, it highlights GEE’s role in pinpointing emission hotspots, as demonstrated in studies monitoring uptakes. By providing insights into GEE’s capabilities for precise monitoring and mapping of GHGs, this review aims to advance environmental research and decision-making processes in mitigating climate change. 
651 4 |a Africa 
651 4 |a Brazil 
651 4 |a South Africa 
651 4 |a Ethiopia 
653 |a Accuracy 
653 |a Nitrous oxide 
653 |a Interoperability 
653 |a Datasets 
653 |a Collaboration 
653 |a Spatial analysis 
653 |a Trends 
653 |a Nitrogen dioxide 
653 |a Environmental research 
653 |a Emissions 
653 |a Methane 
653 |a Remote sensing 
653 |a Remote monitoring 
653 |a Researchers 
653 |a Information sharing 
653 |a Carbon dioxide 
653 |a Machine learning 
653 |a Greenhouse gases 
653 |a Climate change 
653 |a Deforestation 
653 |a Data analysis 
653 |a Spatial data 
653 |a Drought 
653 |a Artificial intelligence 
653 |a Cloud computing 
653 |a Decision making 
653 |a Impact analysis 
653 |a Algorithms 
653 |a Environmental monitoring 
653 |a Satellites 
653 |a Software 
700 1 |a Gebrekidan Worku Tefera 
700 1 |a Ray, Ram L 
773 0 |t Data  |g vol. 10, no. 1 (2025), p. 8 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159407869/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159407869/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159407869/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch