A Hybrid Model for Soybean Yield Prediction Integrating Convolutional Neural Networks, Recurrent Neural Networks, and Graph Convolutional Networks

Spremljeno u:
Bibliografski detalji
Izdano u:Computation vol. 13, no. 1 (2025), p. 4
Glavni autor: Ingole, Vikram S
Daljnji autori: Kshirsagar, Ujwala A, Singh, Vikash, Manish Varun Yadav, Krishna, Bipin, Kumar, Roshan
Izdano:
MDPI AG
Teme:
Online pristup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3159418329
003 UK-CbPIL
022 |a 2079-3197 
024 7 |a 10.3390/computation13010004  |2 doi 
035 |a 3159418329 
045 2 |b d20250101  |b d20250131 
084 |a 231446  |2 nlm 
100 1 |a Ingole, Vikram S  |u Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India; <email>vikramingole1@gmail.com</email>; Department of Electronics and Telecommunication Engineering, Shri Sant Gajanan Maharaj College of Engineeing, Shegaon 444203, Maharashtra, India 
245 1 |a A Hybrid Model for Soybean Yield Prediction Integrating Convolutional Neural Networks, Recurrent Neural Networks, and Graph Convolutional Networks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Soybean yield prediction is one of the most critical activities for increasing agricultural productivity and ensuring food security. Traditional models often underestimate yields because of limitations associated with single data sources and simplistic model architectures. These prevent complex, multifaceted factors influencing crop growth and yield from being captured. In this line, this work fuses multi-source data—satellite imagery, weather data, and soil properties—through the approach of multi-modal fusion using Convolutional Neural Networks and Recurrent Neural Networks. While satellite imagery provides information on spatial data regarding crop health, weather data provides temporal insights, and the soil properties provide important fertility information. Fusing these heterogeneous data sources embeds an overall understanding of yield-determining factors in the model, decreasing the RMSE by 15% and improving R2 by 20% over single-source models. We further push the frontier of feature engineering by using Temporal Convolutional Networks (TCNs) and Graph Convolutional Networks (GCNs) to capture time series trends, geographic and topological information, and pest/disease incidence. TCNs can capture long-range temporal dependencies well, while the GCN model has complex spatial relationships and enhanced the features for making yield predictions. This increases the prediction accuracy by 10% and boosts the F1 score for low-yield area identification by 5%. Additionally, we introduce other improved model architectures: a custom UNet with attention mechanisms, Heterogeneous Graph Neural Networks (HGNNs), and Variational Auto-encoders. The attention mechanism enables more effective spatial feature encoding by focusing on critical image regions, while the HGNN captures interaction patterns that are complex between diverse data types. Finally, VAEs can generate robust feature representation. Such state-of-the-art architectures could then achieve an MAE improvement of 12%, while R2 for yield prediction improves by 25%. In this paper, the state of the art in yield prediction has been advanced due to the employment of multi-source data fusion, sophisticated feature engineering, and advanced neural network architectures. This provides a more accurate and reliable soybean yield forecast. Thus, the fusion of Convolutional Neural Networks with Recurrent Neural Networks and Graph Networks enhances the efficiency of the detection process. 
653 |a Accuracy 
653 |a Humidity 
653 |a Deep learning 
653 |a Agricultural production 
653 |a Trends 
653 |a Soil properties 
653 |a Artificial neural networks 
653 |a Data sources 
653 |a Satellite imagery 
653 |a Food supply 
653 |a Data integration 
653 |a Crop diseases 
653 |a Soybeans 
653 |a Agriculture 
653 |a Precipitation 
653 |a Spatial data 
653 |a Crop growth 
653 |a Soil fertility 
653 |a Temperature 
653 |a Graph neural networks 
653 |a Decision making 
653 |a Neural networks 
653 |a Recurrent neural networks 
653 |a Satellites 
653 |a Multisensor fusion 
653 |a Rain 
653 |a Meteorological data 
700 1 |a Kshirsagar, Ujwala A  |u Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India; <email>vikramingole1@gmail.com</email> 
700 1 |a Singh, Vikash  |u Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; <email>bipins.krishna@manipal.edu</email> 
700 1 |a Manish Varun Yadav  |u Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India 
700 1 |a Krishna, Bipin  |u Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; <email>bipins.krishna@manipal.edu</email> 
700 1 |a Kumar, Roshan  |u Department of Electronic and Information Technology, Miami College, Henan University, Kaifeng 475004, China; <email>roshan.iit123@henu.edu.cn</email> 
773 0 |t Computation  |g vol. 13, no. 1 (2025), p. 4 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159418329/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159418329/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159418329/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch