MARC

LEADER 00000nab a2200000uu 4500
001 3159426040
003 UK-CbPIL
022 |a 2073-4433 
024 7 |a 10.3390/atmos16010022  |2 doi 
035 |a 3159426040 
045 2 |b d20250101  |b d20251231 
084 |a 231428  |2 nlm 
100 1 |a Rana Muhammad Amir Latif  |u The Center for Modern Chinese City Studies, School of Geographical Sciences, East China Normal University, Shanghai 200062, China; <email>52263902018@stu.ecnu.edu.cn</email> 
245 1 |a Flood Susceptibility Mapping in Punjab, Pakistan: A Hybrid Approach Integrating Remote Sensing and Analytical Hierarchy Process 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Flood events pose significant risks to infrastructure and populations worldwide, particularly in Punjab, Pakistan, where critical infrastructure must remain operational during adverse conditions. This study aims to predict flood-prone areas in Punjab and assess the vulnerability of critical infrastructures within these zones. We developed a robust Flood Susceptibility Model (FSM) utilizing the Maximum Likelihood Classification (MLC) model and Analytical Hierarchy Process (AHP) incorporating 11 flood-influencing factors, including “Topographic Wetness Index (TWI), elevation, slope, precipitation (rain, snow, hail, sleet), rainfall, distance to rivers and roads, soil type, drainage density, Land Use/Land Cover (LULC), and the Normalized Difference Vegetation Index (NDVI)”. The model, trained on a dataset of 850 training points, 70% for training and 30% for validation, achieved a high accuracy (AUC = 90%), highlighting the effectiveness of the chosen approach. The Flood Susceptibility Map (FSM) classified high- and very high-risk zones collectively covering approximately 61.77% of the study area, underscoring significant flood vulnerability across Punjab. The Sentinel-1A data with Vertical-Horizontal (VH) polarization was employed to delineate flood extents in the heavily impacted cities of Dera Ghazi Khan and Rajanpur. This study underscores the value of integrating Multi-Criteria Decision Analysis (MCDA), remote sensing, and Geographic Information Systems (GIS) for generating detailed flood susceptibility maps that are potentially applicable to other global flood-prone regions. 
651 4 |a Punjab Pakistan 
651 4 |a Pakistan 
653 |a Hail 
653 |a Multiple criterion 
653 |a Vertical polarization 
653 |a Geographic information systems 
653 |a Susceptibility 
653 |a Infrastructure 
653 |a Remote sensing 
653 |a Soil types 
653 |a Sleet 
653 |a Land use 
653 |a Drainage density 
653 |a Climate change 
653 |a Wetness index 
653 |a Decision analysis 
653 |a Landslides & mudslides 
653 |a Training 
653 |a Decision making 
653 |a Land cover 
653 |a Mapping 
653 |a Disaster relief 
653 |a Hierarchies 
653 |a Floods 
653 |a Methods 
653 |a Subjectivity 
653 |a Geographical information systems 
653 |a Rivers 
653 |a Normalized difference vegetative index 
653 |a Critical infrastructure 
653 |a Flood predictions 
653 |a Information systems 
653 |a Analytic hierarchy process 
653 |a Rainfall 
653 |a Flood mapping 
653 |a Risk assessment 
653 |a Machine learning 
653 |a Horizontal polarization 
653 |a Precipitation 
653 |a Support vector machines 
653 |a Maps 
653 |a Storm damage 
653 |a Vegetation index 
700 1 |a He, Jinliao  |u The Center for Modern Chinese City Studies, Institute of Urban Development, East China Normal University, Shanghai 200062, China 
773 0 |t Atmosphere  |g vol. 16, no. 1 (2025), p. 22 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159426040/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159426040/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159426040/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch