Application of Machine Learning in Terahertz-Based Nondestructive Testing of Thermal Barrier Coatings with High-Temperature Growth Stresses

Guardat en:
Dades bibliogràfiques
Publicat a:Coatings vol. 15, no. 1 (2025), p. 49
Autor principal: Zhou, Xu
Altres autors: Ye, Dongdong, Yin, Changdong, Wu, Yiwen, Chen, Suqin, Ge, Xin, Wang, Peiyong, Huang, Xinchun, Liu, Qiang
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3159429374
003 UK-CbPIL
022 |a 2079-6412 
024 7 |a 10.3390/coatings15010049  |2 doi 
035 |a 3159429374 
045 2 |b d20250101  |b d20251231 
084 |a 231445  |2 nlm 
100 1 |a Zhou, Xu  |u School of Electrical and Automation, Wuhu Institute of Technology, Wuhu 241006, China; <email>101043@whit.edu.cn</email> (Z.X.); <email>101044@whit.edu.cn</email> (C.Y.); <email>chensuqin@whit.edu.cn</email> (S.C.); <email>xin.ge@whit.edu.cn</email> (X.G.); <email>101124@whit.edu.cn</email> (Q.L.) 
245 1 |a Application of Machine Learning in Terahertz-Based Nondestructive Testing of Thermal Barrier Coatings with High-Temperature Growth Stresses 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The gradual growth of oxides inside thermal barrier coatings is a key factor leading to the degradation of thermal barrier coating performance until its failure, and accurate monitoring of the growth stress during this process is crucial to ensure the long-term stable operation of engines. In this study, terahertz time-domain spectroscopy was introduced as a new method to characterize the growth stress in thermal barrier coatings. By combining metallographic analysis and scanning electron microscope (SEM) observation techniques, the real microstructure of the oxide layer was obtained, and an accurate simulation model of the oxide growth was constructed on this basis. The elastic solutions of the thermally grown oxide layer of thermal insulation coatings were obtained by using the controlling equations in the rate-independent theoretical model, and the influence of the thickness of the thermally grown oxide (TGO) layer on the stress distribution was explored. Based on experimental data, multidimensional 3D numerical models of thermal barrier coatings with different TGO thicknesses were constructed, and the terahertz time-domain responses of oxide coatings with different thicknesses were simulated using the time-domain finite difference method to simulate the actual inspection scenarios. During the simulation process, white noise with signal-to-noise ratios of 10 dB to 20 dB was embedded to approximate the actual detection environment. After adding the noise, wavelet transform (WT) was used to reduce the noise in the data. The results showed that the wavelet transform had excellent noise reduction performance. For the problems due to the large data volume and small sample data after noise reduction, local linear embedding (LLE) and kernel-based extreme learning machine (KELM) were used, respectively, and the kernel function was optimized using the gray wolf optimization (GWO) algorithm to improve the model’s immunity to interference. Experimental validation showed that the proposed LLE-GWO-KELM hybrid model performed well in predicting the TGO growth stress of thermal insulation coatings. In this study, a novel, efficient, nondestructive, online, and high-precision measurement method for the growth in TGO stress of thermal barrier coatings was developed, which provides reliable technical support for evaluating the service life of thermal barrier coatings. 
653 |a Measurement methods 
653 |a Aircraft accidents & safety 
653 |a Accuracy 
653 |a Nondestructive testing 
653 |a Simulation models 
653 |a Finite difference method 
653 |a Optimization 
653 |a Signal processing 
653 |a Airplane engines 
653 |a Thermal insulation 
653 |a Aviation 
653 |a White noise 
653 |a Time domain analysis 
653 |a Data processing 
653 |a Noise levels 
653 |a Thermal barrier coatings 
653 |a Machine learning 
653 |a Stress concentration 
653 |a Wavelet transforms 
653 |a High temperature 
653 |a Stress distribution 
653 |a Efficiency 
653 |a Corrosion 
653 |a Stress state 
653 |a Oxide coatings 
653 |a Temperature 
653 |a Numerical models 
653 |a Thermal barriers 
653 |a Noise reduction 
653 |a Algorithms 
653 |a Service life assessment 
653 |a Thermal simulation 
653 |a Kernel functions 
653 |a Heat resistance 
653 |a Embedding 
653 |a Thickness 
700 1 |a Ye, Dongdong  |u School of Artificial Intelligence, Anhui Polytechnic University, Wuhu 241000, China 
700 1 |a Yin, Changdong  |u School of Electrical and Automation, Wuhu Institute of Technology, Wuhu 241006, China; <email>101043@whit.edu.cn</email> (Z.X.); <email>101044@whit.edu.cn</email> (C.Y.); <email>chensuqin@whit.edu.cn</email> (S.C.); <email>xin.ge@whit.edu.cn</email> (X.G.); <email>101124@whit.edu.cn</email> (Q.L.) 
700 1 |a Wu, Yiwen  |u Institute of Intelligent Manufacturing, Wuhu Institute of Technology, Wuhu 241006, China; <email>101138@whit.edu.cn</email> 
700 1 |a Chen, Suqin  |u School of Electrical and Automation, Wuhu Institute of Technology, Wuhu 241006, China; <email>101043@whit.edu.cn</email> (Z.X.); <email>101044@whit.edu.cn</email> (C.Y.); <email>chensuqin@whit.edu.cn</email> (S.C.); <email>xin.ge@whit.edu.cn</email> (X.G.); <email>101124@whit.edu.cn</email> (Q.L.) 
700 1 |a Ge, Xin  |u School of Electrical and Automation, Wuhu Institute of Technology, Wuhu 241006, China; <email>101043@whit.edu.cn</email> (Z.X.); <email>101044@whit.edu.cn</email> (C.Y.); <email>chensuqin@whit.edu.cn</email> (S.C.); <email>xin.ge@whit.edu.cn</email> (X.G.); <email>101124@whit.edu.cn</email> (Q.L.) 
700 1 |a Wang, Peiyong  |u Xiongming Aviation Science Industry (Wuhu) Co., Ltd., No. 206, Xinwu Avenue, Wuhu 241000, China; <email>peiyongw@xiong-ming.com</email> 
700 1 |a Huang, Xinchun  |u Anhui Yingrui Excellent Material Technology Co., Ltd., Hengshan Avenue, Wuhu 241000, China; <email>yryckxyj@163.com</email> 
700 1 |a Liu, Qiang  |u School of Electrical and Automation, Wuhu Institute of Technology, Wuhu 241006, China; <email>101043@whit.edu.cn</email> (Z.X.); <email>101044@whit.edu.cn</email> (C.Y.); <email>chensuqin@whit.edu.cn</email> (S.C.); <email>xin.ge@whit.edu.cn</email> (X.G.); <email>101124@whit.edu.cn</email> (Q.L.) 
773 0 |t Coatings  |g vol. 15, no. 1 (2025), p. 49 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159429374/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159429374/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159429374/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch