Spatial Cognitive EEG Feature Extraction and Classification Based on MSSECNN and PCMI

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Bioengineering vol. 12, no. 1 (2025), p. 25
Egile nagusia: Xianglong Wan
Beste egile batzuk: Sun, Yue, Yao, Yiduo, Wan Zuha Wan Hasan, Dong, Wen
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3159429414
003 UK-CbPIL
022 |a 2306-5354 
024 7 |a 10.3390/bioengineering12010025  |2 doi 
035 |a 3159429414 
045 2 |b d20250101  |b d20251231 
100 1 |a Xianglong Wan  |u School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Perception and Control of Intelligent Bionic Unmanned Systems, Ministry of Education, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China 
245 1 |a Spatial Cognitive EEG Feature Extraction and Classification Based on MSSECNN and PCMI 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the aging population rising, the decline in spatial cognitive ability has become a critical issue affecting the quality of life among the elderly. Electroencephalogram (EEG) signal analysis presents substantial potential in spatial cognitive assessments. However, conventional methods struggle to effectively classify spatial cognitive states, particularly in tasks requiring multi-class discrimination of pre- and post-training cognitive states. This study proposes a novel approach for EEG signal classification, utilizing Permutation Conditional Mutual Information (PCMI) for feature extraction and a Multi-Scale Squeezed Excitation Convolutional Neural Network (MSSECNN) model for classification. Specifically, the MSSECNN classifies spatial cognitive states into two classes—before and after cognitive training—based on EEG features. First, the PCMI extracts nonlinear spatial features, generating spatial feature matrices across different channels. SENet then adaptively weights these features, highlighting key channels. Finally, the MSCNN model captures local and global features using convolution kernels of varying sizes, enhancing classification accuracy and robustness. This study systematically validates the model using cognitive training data from a brain-controlled car and manually operated UAV tasks, with cognitive state assessments performed through spatial cognition games combined with EEG signals. The experimental findings demonstrate that the proposed model significantly outperforms traditional methods, offering superior classification accuracy, robustness, and feature extraction capabilities. The MSSECNN model’s advantages in spatial cognitive state classification provide valuable technical support for early identification and intervention in cognitive decline. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Signal analysis 
653 |a Channels 
653 |a Assessments 
653 |a Electrodes 
653 |a Artificial neural networks 
653 |a Signal processing 
653 |a Cognition 
653 |a Electroencephalography 
653 |a Geriatrics 
653 |a Cognitive ability 
653 |a Performance evaluation 
653 |a Cognitive tasks 
653 |a Cognition & reasoning 
653 |a Robust control 
653 |a EEG 
653 |a Classification 
653 |a Signal quality 
653 |a Signal classification 
653 |a Quality of life 
653 |a Data collection 
653 |a Information processing 
653 |a Females 
653 |a Permutations 
653 |a Neural networks 
700 1 |a Sun, Yue  |u School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing 100083, China 
700 1 |a Yao, Yiduo  |u School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing 100083, China; Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia 
700 1 |a Wan Zuha Wan Hasan  |u Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia 
700 1 |a Dong, Wen  |u School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Perception and Control of Intelligent Bionic Unmanned Systems, Ministry of Education, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China 
773 0 |t Bioengineering  |g vol. 12, no. 1 (2025), p. 25 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159429414/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159429414/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159429414/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch